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1.1. Dairy industry development 

Dairy products are rich sources of essential nutrients like calcium, protein, and 

vitamins, which are important for maintaining good health (FAO, 2013; Guetouache 

et al., 2014; Pereira, 2014). The increasing global population has increased the 

demand for dairy products, prompting growth and innovation in the dairy industry. 

Among the many major dairy-producing nations, the Netherlands was the 4th biggest 

suppliers of milk on global markets in 2022, contributing 8.2% of the total milk 

exports (Workman, 2023). The Dutch dairy sector experienced changes in total milk 

production and number of cows from 2000 to 2022 (Figure 1.1). Notably, between 

2000 and 2016, both total milk production and the cow population surged by 28% 

and 16% respectively. However, this growth trend reversed between 2016 and 2018, 

with both indicators declining by 3% and 7%, respectively. This contraction was 

attributed to the introduction of a new manure policy to limit phosphate emissions 

(Klootwijk et al., 2016; Jongeneel et al., 2017). Subsequently, the dairy industry 

stabilized, resulting in 1.571 million cows producing a total of 13.8 billion kg of milk 

in 2022. 

 
Figure 1.1 Overview of number of cows and total milk production in the Netherlands from 

2000 to 2022 (adapted from annual report of CRV, 2022) 

 



Chapter 1 General Introduction 

3 
 

1 
Behind this growing production scene, there has been a noticeable trend of increasing 

herd sizes accompanied by a reduction in the number of herds (Figure 1.2). Large 

farms are characterized by the investment in modernization and technology-driven 

solutions to replace expensive labour, and therefore becoming more competitive in 

terms of supply chain management, quality control and cost effectiveness (Oleggini 

et al., 2001; Gargiulo et al., 2018). Importantly, the average milk production per cow 

per year experienced a notable 14% increase between 2005 and 2018, remaining 

stable thereafter. This upward trend reflects the increased productivity of dairy cows.  

Figure 1.2 Overview of number of herds, herd size and average milk production per cow per 

year in the Netherlands from 2000 to 2022 (adapted from annual report of CRV, 2022) 

 

The Netherlands has been a leader in adopting advanced technologies for dairy 

farming, such as robotic milking systems, automated feeding systems, data recording 

and data analytics (Rutten et al., 2013; Steeneveld and Hogeveen, 2015) with an 

increasing percentage of cows and herds undergoing milk recording over the past 

two decades (Figure 1.3), providing us with insights into quantity and quality of 

milk production. This recording system serves as a tool for frequent monitoring of 

milk production, thereby opening the possibility for better management in health, 

reproduction, feed and nutrition (Rutten et al., 2017; Deng et al., 2020; Hut et al., 

2021). 



Chapter 1 General Introduction 

4 
 

Figure 1.3 Overview of the percentage of milk-recorded cows and herd in the Netherlands 

from 2000 to 2022 (adapted from annual report of CRV, 2022) 

1.1.1. Metrics to evaluate milk production 

As milk production becomes increasingly accessible to record, the question arises: 

how can we effectively evaluate milk production performance and capture the 

difference between individual cows? Various metrics have been proposed to evaluate 

milk production, like cumulative milk production over a specific period (e.g., 305 

days, 365 days, or an entire lactation) and milk yield per day within a certain period 

(such as lactating days or calving intervals) (Cole et al., 2012; Atashi et al., 2020; 

Burgers et al., 2021). These metrics are based on simple calculations on raw data. 

However, they only provide an overview of milk production performance, without 

capturing changes in milk production over the entire lactation period. These changes, 

or patterns in milk production offer more information (e.g., peak yield, peak time, 

persistency) about the lactation, which can be useful for breeding and selection, 

health monitoring, and other applications. For instance, persistency can be used to 

describe the cow’s ability to maintain a slow rate of decline in production after the 

peak (Wood, 1967). Previous studies showed that persistent cows can have positive 

effects in a herd such as improved milk yield, improved conception rates, extended 

productive lifetimes or reduced culling rates (Dekkers et al., 1998; Hadley et al., 

2006; Togashi et al., 2016). Therefore, farmers are eager to identify and selectively 
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breed cows with high persistency (Dekkers et al., 1996; Cole and VanRaden, 2006; 

Togashi and Lin, 2009). 

Changes in milk production over the entire lactation period can be visualized through 

lactation curves, which depict the relationship between milk yields and days in milk 

during lactation (Wood, 1974; Ehrlich, 2011). For example, consider two cows with 

the same 305d milk yield (M305). Their paths to achieving the same M305 can differ 

(Figure 1.4). Cow A displays a lower peak and a slower rate of milk production 

decline after the peak, in contrast to cow B. Potentially, cow A can be considered 

superior to cow B for several reasons. In the early lactation, cow A produce less milk 

and therefore it will experience less stress from negative energy balance (Butler, 

2005; Wathes et al., 2007b; Lehmann et al., 2016). Moreover, cow A's ability to 

maintain a stable milk production rate makes her a strong candidate for extended 

lactation strategies, further optimizing milk production efficiency (Sorensen et al., 

2008a; Kok et al., 2019; Sehested et al., 2019). However, evaluation by traditional 

metrics might fail to capture this difference between these two cows and therefore 

other metrics are needed. This is where lactation curve modelling becomes essential. 

Figure 1.4 Lactation curves of two cows with the same 305d milk production (M305) 

1.2. Lactation curve modeling 

A lactation curve model is a mathematical representation used to describe the shape 

of the lactation curve based on measured milk production data. It can extrapolate 
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and quantify a lactation curve and estimate actual production from incomplete data 

sets. 

1.2.1. Difference between models  

Various mathematical equation models have been proposed to fit the lactation data. 

According to their curve-fitting algorithms, different empirical models derive 

various lactation curve characteristics (LCC), quantifying the shape of the curve in 

different ways (Table 1). The first lactation model was introduced in 1923 (Brody 

et al., 1923). Initially, this model employed an exponential function to depict the 

declining phase of the lactation curve. A year later, the model was improved by 

incorporating the modelling of the ascending phase (Brody et al., 1924). While this 

pioneering effort marked a significant step, it was noted that the model tended to 

underestimate milk yield in the middle of lactation and overestimate the milk yield 

at the end of lactation (Cobby and Le Du, 1978). Nonetheless, it served as an 

important foundation for lactation curve modelling. Later, the Sikka model (Sikka, 

1950) was built which provided a better fit for primiparous cows than multiparous 

cows (Gahlot et al., 1988). Building upon the Brody model, the Fischer model 

(Fischer, 1958) was introduced. However, this model demonstrated shortcomings, 

including underestimating maximum milk yield and estimating the peak date 

relatively early (Rowlands et al., 1982). To improve the fitting, Nelder (1966) 

proposed the inverse function to overcome the disadvantages of the ordinary 

polynomial (unbounded, built-in symmetry). On the other hand, Wood (1967) 

proposed an adjustment encompassing the entire curve through an incomplete 

gamma-type function, recognizing the limitations of the aforementioned exponential 

models in accurately capturing the ascending phase of the lactation curve. This 

classic Wood model emerged as the most widely recognized lactation curve model 

and served as an inspiration for subsequent improvements and innovations (Cobby 

and Le Du, 1978; Dhanoa, 1981; Jenkins and Ferrell, 1984). While these innovative 

models enhanced the Wood model in various ways, they also exhibited certain 
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limitations. Among these improved models, the Wilmink model garnered notable 

recognition and adoption (Wilmink, 1987). The Wilmink model can make 

adjustment for herd, age at calving and the stage of lactation to improve prediction 

(Wilmink, 1987). However, it's important to note that the performance of the 

Wilmink model may be compromised when the first test day occurs after DIM 60 

(Silvestre et al., 2006). Consequently, the effectiveness of the Wilmink model in 

making accurate predictions is significantly influenced by the interval between 

calving and the first test day. However, the previously mentioned models have been 

commonly used and have generally met people's expectations. In recent years, there 

has been a growing interest in extending lactations. While the other models has 

limited ability to describe the shape of the lactation curve beyond 305 days (Vargas 

et al., 2000; VanRaden et al., 2006; Dematawewa et al., 2007), the MilkBot model 

adjusts to extended lactations (Ehrlich, 2011). This model also offers greater 

flexibility for accounting for the influence of diseases and management practices, 

potentially leading to more accurate daily milk yield estimates by incorporating prior 

information (Ehrlich, 2011).According to the curve-fitting algorithms, different 

models derive various LCC, quantifying the shape of the curve in different ways. For 

example, the classic Wood model consists of the scale a (representing the level of 

production), the ramp b (representing the rising rate of milk to the peak production 

level) and the declining slope c (Wood, 1967). In MilkBot, scale and ramp are similar 

to the Wood model. The other characteristics are the time of maximal creation of 

productive capacity (offset, c) and the loss of productive capacity (decay, d), which 

can be easily transformed into a measure of persistency using the formula 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ଴.଺ଽଷௗ௘௖௔௬  (Ehrlich, 2013). Persistency from Milkbot refers to the 

number of days it takes for the milk production to decrease by half during the 

declining stage of lactation. It can be thought of as the "half-life" of milk production. 

For instance, if a cow has a persistency of 300 days and reaches its peak yield of 40 

kg at DIM 100, it means that this cow will attain a milk yield of 20kg at DIM 400. 
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1.2.2. Lactation curve modeling at cow level 

LCC serve as a crucial metric for evaluating milk production performance at the cow 

level and have diverse applications in various dairy research fields. They are 

intensely used in research related to feed composition and feeding systems (Chen et 

al., 2016; van Hoeij et al., 2017; Różańska-Zawieja et al., 2021). For instance, the 

effect of dietary energy source and dietary energy level on LCC were studied (van 

Hoeij et al., 2017). Moreover, LCC serve as a tool for identifying cows with a 

specific lactational phenotype (Yamazaki et al., 2011a; Ehrlich, 2013). For example, 

it’s suggested that cows exhibiting high daily milk yield and long milking intervals 

are more efficient and thus suited for being milked with an automated milking system 

(Masía et al., 2020). Additionally, LCC can characterize perturbations of milk and 

offer insights about how cows respond to challenges during the lactation (Abdelkrim 

et al., 2021; Adriaens et al., 2021; Wang et al., 2022). For disease detection, lactation 

curve analysis can significantly contribute to the assessment of both short- and long-

term effects of metabolic diseases on milk production (Yamazaki et al., 2009; 

Hostens et al., 2012; Masia et al., 2022). For calculation of economic disease impacts, 

lactation curve analysis are used to determine milk production losses due to disease 

(Steeneveld et al., 2007, 2011; Andersen et al., 2011). Disease-related impacts on 

milk production and economic impact might not have become apparent when total 

milk production alone (like M305) was analysed. For reproduction management, 

some studies have established associations between LCC and age at first calving 

(Elahi Torshizi, 2016; Atashi et al., 2021). Similarly, explorations have been 

conducted into the potential associations between LCC and parameters such as 

lactation length and dry period length (Atashi et al., 2013; Chen et al., 2016). Some 

researchers have utilized LCC to calculate cow persistency, allowing for 

comprehensive investigations into how persistency relates to reproduction (Inchaisri 

et al., 2011a; van Hoeij et al., 2017; Atashi et al., 2020). For instance, persistency 

metrics derived from LCC aids in the determination of the economically optimal 

voluntary waiting period (VWP) for first insemination (Inchaisri et al., 2011a). 
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Moreover, persistency metrics derived from the LCC of the Wilmink lactation model 

have gained recognition and significance as a critical breeding trait since 2001 in the 

Netherlands (personal communication with Gerben de Jong from the Cattle 

Improvement Cooperative CRV). 

Beyond the aforementioned research and applications, some important research 

topics remained with little attention.  

First, the shape of the lactation curve has been used as an argument to extend the 

lactation in dairy cows (Sorensen et al., 2008b; Lehmann et al., 2016; Burgers et al., 

2021). Cows with flatter lactation curves, referred to as high persistent cows, can 

yield economic benefits when their lactation is extended (Dekkers et al., 1998; De 

Vries, 2006), which resulted in lower feed costs, fewer calvings, lower incidence of 

postpartum metabolic diseases and thus reduced veterinary costs (Van Amburgh et 

al., 1997; Kok et al., 2019; Lehmann et al., 2019a). Maintaining milk production in 

late lactation is a prerequisite for extended lactation (Stefanon et al., 2002; De Vries, 

2006; Niozas et al., 2019). Therefore, when deciding on the VWP of an individual 

cow, it is useful to be aware of the persistency for the remainder of that lactation, 

especially for farmers who consider persistency in their reproduction management. 

Predictions of persistency for the current lactation could thus provide additional 

information to optimize the VWP. Currently, breeding values for persistency are 

calculated for dairy cows (Cole and VanRaden, 2006a; Togashi and Lin, 2008; Cole 

and Null, 2009). However, no studies have focused on predicting the lactation 

persistency and identifying cows eligible for an extended lactation based on readily 

available cow and herd data. Lactation curve modelling could allow for the 

prediction of persistency at any future timepoint (i.e. insemination moment) within 

the lactation period.  

Furthermore, deciding on an optimal VWP for individual cows within a herd is 

complex because of a multitude of cow and management factors and becomes even 

more complicated when taking into account the direct effect of pregnancy on the 
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level of milk production (Yamazaki et al., 2016; Lu and Bovenhuis, 2020). 

Compared to non-pregnant cows, pregnant cows experience an additional decline in 

milk yield during the gestation period (Roche, 2003; Bohmanova et al., 2009; Loker 

et al., 2009). The pregnancy effect is initially limited but becomes more pronounced 

later during the pregnancy due to increased nutrient requirements for the growing 

foetus (Loker et al., 2009) and hormonal changes, leading to an increased regression 

of the mammary gland (Bormann et al., 2002; Zhao et al., 2019). A significant 

decline in the milk yield of pregnant cows has been reported from months 4 or 5 of 

gestation onwards (Roche, 2003; Penasa et al., 2016). While the effect of days post 

conception on an absolute milk yield reduction has been reported in several studies 

(Bohmanova et al., 2009; Loker et al., 2009), the association between days post 

conception and lactation persistency based on a lactation curve model has not yet 

been quantified, i.e., if and how the persistency changes during pregnancy and 

whether or not these changes are related to the days in milk at conception. A better 

understanding of how the days post conception, and hence the moment of 

insemination during lactation, influence lactation persistency, enabling farmers to 

make more informed, evidence-based decisions when taking persistency into 

account in their reproduction management. 

1.2.3. Lactation curve modeling within animal health economics 

At its core, a dairy herd is a business and profitability is an essential part of a 

sustainable dairy farm (van Calker, 2005). A dairy herd has several variable cost 

factors, such as feed costs, labour costs and veterinary costs. Meanwhile, the 

revenues from a dairy farm originate mainly from milk production, and other 

revenues include the sale of cows, calves and surplus forage. A dairy farm can be 

characterized by several management areas, such as grassland management, 

youngstock management, and cow management. The latter one includes optimizing 

milk production, and making decisions on health and reproduction. Within the 

research field of animal health economics (AHE), theories, concepts, procedures and 
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methodologies are developed to support the decision-making process for improving 

animal health and reproduction (McInerney et al., 1992; Dijkhuizen and Morris, 

1996; Jonathan Rushton, 2009). In recent years several studies were performed to 

gain economic insights into health (Shim et al., 2004; Steeneveld et al., 2007; van 

den Borne et al., 2010) and reproduction management of dairy cows (Inchaisri et al., 

2011b; Burgers et al., 2021; Vredenberg et al., 2021). The reproduction studies have 

focused on topics such as optimizing VWP and calving interval, and the timing of 

ceasing insemination (Sørensen and Østergaard, 2003; Inchaisri et al., 2011b, 2012). 

As it is generally known that the shape of lactation curve has a direct impact on both 

milk production and, consequently, milk revenue (e.g., Togashi and Lin, 2009; 

Němečková et al., 2015), AHE studies on reproduction management took into 

account the shape of the lactation curve, and thus included LCC in their decision 

support models. This approach provides opportunities for more informed decision 

making on reproductive decisions for individual cows. 

Besides the cow-level decision support, within AHE also herd-level studies are 

performed focusing on health and reproduction factors associated with the 

profitability of herds (Vredenberg et al., 2021; Walsh et al., 2021; Yue et al., 2022). 

As it is generally known that individual cows with a persistent milk production are 

more profitable (e.g., Dekkers et al., 1998; Němečková et al., 2015), it might be that 

herds with relatively more persistent cows are associated with higher profitability. 

Therefore, a herd lactation curve is needed to reflect the lactation curves of all 

individual cows in the herd. As previously mentioned, lactation curves can differ 

between herds, since the environment and management of a dairy herd influence 

their shapes (Val-Arreola et al., 2004; Ehrlich, 2013). To develop herd lactation 

curves, a method to summarize individual lactation curves into a group lactation 

curve is needed. Previously, aggregating lactation curves has been a common 

approach, with primarily two ways applied. First, within a group (e.g., parity), either 

the average milk yield of cows at each DIM (VanRaden et al., 2006; Ehrlich, 2011) 

or the average milk yield and average DIM within a specific interval of the lactation 
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were calculated (Vargas et al., 2000; Pietersma et al., 2001). Subsequently, the 

aggregated data for each group would be fitted to a lactation curve model. 

Alternatively, the pooled milk production data from all cows within a group was 

fitted as if the entire milk production came from one cow (Scott et al., 1996; Val-

Arreola et al., 2004; Dematawewa et al., 2007). Both ways are relatively easy and 

straightforward but limit the ability to explore differences in cow level lactation 

curve characteristics within the group. 

Economic evaluations of herd lactation curve characteristics (HLCC) need a valid 

aggregation of cow lactation curve characteristics as economic data are generally 

expressed at a calendar year basis. Such a herd lactation curve needs to be 

summarized on a year basis as well. This will be challenging as individual cow 

lactation curves often belong to multiple calendar years. Aggregating methods from 

cow to herd level lactation curve on a calendar year basis have not previously been 

described. The annual HLCC might open possibilities to explore economic 

differences between herds. In previous studies, the herd 305-d milk production 

(HM305) was often used to describe the herd’s production performance (Pinedo et 

al., 2010; Nor et al., 2014; Shahid et al., 2015), and used in economic analyses as 

well (Ferguson et al., 2000; Green et al., 2002; Ferguson and Skidmore, 2013). 

However, it is unknown whether the HLCC is better or worse than the absolute 

volume of milk production at explaining the economic variation between herds. 

1.3. Scope and outline of this thesis 

The scope of this thesis was to explore the application of lactation curve modelling 

based on farm data collected on commercial dairy farms in the Netherlands and 

Belgium (Figure 1.5).  

To achieve this overall scope, four objectives were formulated: 

1. to predict lactation persistency for DIM 305 at different insemination moments 

2. to investigate the association between days post conception and persistency 
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3. to summarize cow lactation curves into HLCC and illustrate a field application 

of HLCC  

4. to compare whether HLCC or HM305 is better able to explain herd economic 

performance. 

Milkbot lactation model was used throughout these applications for several reasons. 

Firstly, the MilkBot model is capable of accurately modelling extended lactations 

(Ehrlich, 2011). Other models, such as the Wood function, have limited capacity to 

accurately describe the shape of the lactation curve beyond DIM 305 (Dekkers et al., 

1998; Bouallègue and M’hamdi, 2019). Secondly, the MilkBot model utilizes 

Bayesian statistics to provide a consistent fitting of individual cow lactation data. 

Even in cases where the data is sparse and noisy, the incorporation of prior 

information (i.e., the population mean LCC) can provide an LCC estimate. 

 

Figure 1.5 The application of lactation curve modelling in dairy production in the thesis  

The outline of the thesis is visualized in Figure 1.5, and consisted of two kind of 

applications. The first application is at cow level (Chapter 2 and 3). Chapter 2 

aimed to predict lactation persistency for DIM 305 at different insemination 

moments (DIM 50, 75, 100 and 125). Chapter 3 presented the association between 
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days post conception and persistency, with an additional focus on the potential 

influence of DIM at conception on persistency. The second application is at herd 

level (Chapter 4 and 5). Chapter 4 presented a procedure to summarize cow 

lactation curves into HLCC on a calendar year basis. Subsequently, a field 

application of HLCC is illustrated and this includes the association between HLCC 

and IOFC. In Chapter 5, we further investigated the application by determining 

whether HLCC or HM305 is better at explaining the variation in economic 

performance between herds. 

Finally, in Chapter 6, the main results of this thesis are discussed. Additionally, the 

datasets used, cow and herd level clustering issues, the definition of persistency and 

the generalizability of our study results to China are discussed. 
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Abstract 
When deciding on the voluntary waiting period of an individual cow, it might be 

useful to have insight into the persistency for the remainder of that lactation at the 

moment of the insemination decision, especially for farmers who consider 

persistency in their reproduction management. Currently, breeding values for 

persistency are calculated for dairy cows but, to our knowledge, prediction models 

to accurately predict persistency at different moments of insemination are lacking. 

This study aimed to predict lactation persistency for DIM 305 at different 

insemination moments (DIM 50, 75, 100 and 125). Available cow and herd level 

data from 2005–2022 were collected for a total of 16,980 cows from 84 herds located 

in the Netherlands and Belgium. Lactation curve characteristics were estimated for 

every daily record using the data up to and including that day. Persistency was 

defined as the number of days it takes for the milk production to decrease by half 

during the declining stage of lactation, and calculated from the estimated lactation 

curve characteristic ‘decay’. Four linear regression models for each of the selected 

insemination moment were built separately to predict decay at DIM 305 (decay-305). 

Independent variables included the lactation curve characteristics at the selected 

insemination moment, daily milk yield, age, calving season, parity group and other 

herd variables. The average decay-305 of primiparous cows was lower than that of 

multiparous cows (1.55 *10-3 vs 2.41*10-3, equivalent to a persistency of 447 vs 288 

days, respectively). Results showed that our models had limitations in accurately 

predicting persistency, although predictions improved slightly at later insemination 

moments, with R2 values ranging between 0.27 and 0.41. It can thus be concluded 

that, based only on cow and herd milk production information, accurate prediction 

of persistency for DIM 305 is not feasible. 

 

Keywords 

persistency, dairy, prediction model, milk production, insemination moment 
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2.1. Introduction 

Traditionally, 12 to 13 months has been considered to be the economically optimal 

calving interval for dairy cows (Sørensen and Østergaard, 2003; Inchaisri et al., 

2011b). Such a calving interval can maximize milk yield per cow per year, making 

use of peak production at the beginning of every lactation (M.J. et al., 2007; Kok et 

al., 2019). However, whether this yearly calving interval is the most optimal choice 

for every cow is now being questioned in the literature. First, cows can suffer from 

a negative energy balance at early lactation, especially high-producing cows 

(Butler, 2005; Kawashima et al., 2012). Subsequent conception rates might 

therefore be low as cows may not have recovered from the metabolic problems 

caused by this negative energy balance (Ingvartsen et al., 2003; LeBlanc et al., 

2006). Second, a yearly calving interval can result in cows being dried off with a 

relatively high milk yield at the end of the lactation. This has been described as a 

risk factor for poor udder health in subsequent lactations (Rajala-Schultz et al., 

2005; Odensten et al., 2007). Third, a yearly calving interval might be an indication 

for more metabolic disease treatments per year (Burgers et al., 2022). More costs 

(labour, veterinarian and insemination) may then be incurred and the cow’s health, 

welfare and lifespan may be impaired (Bertulat et al., 2013; Zobel et al., 2015).  

Extending lactation has been proposed as a solution to solve the above-mentioned 

issues. By extending lactation, farmers deliberately delay the first insemination 

moment. Several advantages of extended lactation have been identified (Österman 

and Bertilsson, 2003; Niozas et al., 2019; van Knegsel et al., 2022). Extended 

lactation could benefit cow health and production efficiency due to fewer transition 

periods in the lifespan of the cow. Extending the voluntary waiting period (VWP) 

for some cows has resulted in higher milk yield per day of calving interval (Arbel et 

al., 2001; Österman and Bertilsson, 2003; Burgers et al., 2021). In addition, 

extending the VWP can lower milk yield during the last six weeks before dry-off 

and benefit udder health in the following dry period and the next lactation (Rajala-
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Schultz et al., 2005; Niozas et al., 2019; Burgers et al., 2021). Other advantages of 

extending lactation are that it may reduce greenhouse gas emissions per kg of milk 

produced, increase profitability and improve cow welfare (Wall et al., 2012; 

Lehmann et al., 2014; Browne et al., 2015). However, not all cows are suitable for 

extended lactation and the optimal VWP may vary per cow. It is therefore important 

to select the right cow for extended lactation (Lehmann et al., 2017; Sehested et al., 

2019).  

Maintaining milk production in late lactation is a prerequisite for extended lactation 

(Stefanon et al., 2002; De Vries, 2006; Niozas et al., 2019). Persistent cows decrease 

their milk yield at a lower rate after the peak day, resulting in a flatter lactation curve 

than non-persistent cows. Persistency is one of the factors that affect body condition 

scores at the end of the lactation, thus avoiding the risk of parturition diseases after 

the subsequent calving (Roche et al., 2007; Pires et al., 2013). From an economic 

perspective, extending lactation of persistent cows could increase the net partial cash 

flow at herd level (Kok et al., 2019). Extended lactations will be more beneficial, 

especially in herds with more persistent cows (Steeneveld and Hogeveen, 2012). 

Definitions of lactation persistency differ between previous studies. Persistency was 

defined as the milk yield difference at selected DIMs or the declining slope of milk 

yield within selected intervals after peak yield (Togashi et al., 2016; Grayaa et al., 

2019; Burgers et al., 2021). Persistency can also be determined by using lactation 

curve models which quantify the lactation curve based on all available milk yield 

data (Wood, 1974; Ehrlich, 2011). One of the lactation curve characteristics that 

defines the curve is the decay, a lactation curve characteristic that can easily be 

transformed into other measures of persistency as the number of days it takes to halve 

milk production in the declining stage of lactation (Ehrlich, 2011). 

When deciding on the VWP of an individual cow, it is useful to be aware of the 

persistency for the remainder of that lactation, especially for farmers who consider 

persistency in their reproduction management. Predictions of persistency for the 
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current lactation could thus provide additional information to optimize the VWP. 

Currently, breeding values for persistency are calculated for dairy cows (Cole and 

VanRaden, 2006a; Togashi and Lin, 2008; Cole and Null, 2009) but, to our 

knowledge, prediction models to accurately predict persistency at the moment of 

insemination are lacking.  

This study aims to determine whether it is possible to predict lactation persistency 

for DIM 305 at different insemination moments (DIM 50, 75, 100 and 125) based on 

available cow and herd data (excluding breeding values). 

2.2. Materials and methods 

2.2.1. Available data 

Daily milk production and cow data were obtained for the years 2005–2022 from the 

MmmooOgle programme (Puurs, Belgium). Originally, the dataset included 

95,529,301 milking robot visit records for 44,540 cows in 91 herds located 

throughout the Netherlands and Belgium. Milking robot visit records refer to detailed 

records generated by automated milking robots during milking of cows. All robot 

visits included general cow information (e.g., birth date, calving date, age in days 

and parity) and milk yield (kg). The number of lactating cows per herd varied 

between 26 (1%) and 394 (99%) per year, with a mean of 174 cows. 

2.2.2. Preliminary data editing 

The data editing diagram is shown in Figure 2.1. All exact calculations are shown 

in the Github repository mentioned at the end of this section. First, the milking robot 

visit records were summarized into 117,420 lactations from 44,540 cows. 

Subsequently, 326 lactations without parity information were excluded. Percentiles 

of age in days were calculated within every parity and 2,988 lactations with extreme 

age in days per parity (>99% percentile or <1% percentiles) were excluded. In 
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addition, 1,156 lactations with extremely long lactation lengths (>99% percentile) 

were excluded. Applying these lactation level filters resulted in 91,295,489 milking 

robot visit records for 42,990 cows in 91 herds. Subsequently, a method (Lazenby et 

al., 2003) from the International Committee for Animal Recording (ICAR) was used 

to calculate a 24-hour milk yield using the 12 previous milkings for every milking 

robot visit record. The 24-hour milk yield of the last milking robot visit record on a 

given day was considered as the daily milk yield for that specific day. Afterwards, 

31,693,777 daily records were summarized in 112,949 lactations. Among these, 

34,646 lactations were from primiparous cows while 78,303 lactations were from 

multiparous cows. 

 

1 %: the percentile. 
2 LCC: lactation curve characteristics (magnitude, time to peak yield, offset and decay). 
3 RMSE: root mean squared error of the lactation curve fitting.  
 

Figure 2.1 Diagram on data editing of the dataset on milk production per visit to an automatic 

milking system. The numbers in the boxes represent the excluded numbers. 
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2.2.3. Lactation curve modelling 

A lactation curve was fitted for each daily record using the MilkBot model (Ehrlich, 

2011) through the MilkBot lactation API (https://api.milkbot.com/). No records were 

dropped during the fitting process. The full MilkBot equation is shown as: 

𝑌(𝑡) = 𝑎 ቆ1 − ௘೎ష೟ଶ್ ቇ 𝑒ିௗ௧    (1) 

where Y(t) is the estimated milk production when DIM is t, and scale a, ramp b, 

offset c and decay d are the lactation curve characteristics (LCC) describing the 

lactation curve. LCC are estimated for every daily record by fitting a lactation curve 

using the data up to and including that day. For example, LCC at DIM 50 are 

estimated after a lactation curve was fitted for the daily milk records up to and 

including DIM 50. Based on Bayesian statistics, the specific population mean 

lactation curve characteristics were used as prior information, the priors were 

previously adjusted to the population of Dutch dairy farms (Chen et al., 2022a). The 

prior was used to a greater extent when the fitted lactation had fewer daily records.  

In the current study, the a (scale) was renamed magnitude of milk production (in 

kg/day) and the b (ramp) was renamed time to peak yield (in days). The d (decay) 

was transformed into a measure of persistency (in days) using the equation (Ehrlich, 

2011):  𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ଴.଺ଽଷௗ   (2) 

Persistency refers to the number of days it takes for the daily milk production to 

decrease by half during the declining stage of lactation. It can be thought of as the 

"half-life" of milk production. For instance, if a cow has a persistency of 300 days 

and reaches its peak yield of 40 kg at DIM 100, it means that this cow will attain a 

milk yield of 20kg at DIM 400. 
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The 305-day milk production (M305, in kg) can be estimated using the equation: 

M305 = ൫௔ି௔௘షయబఱ೏൯ௗ + ൬௔௕௘ ೎್൰×ቆିଵା௘షయబఱቀభ್శ೏ቁቇଶାଶ௕ௗ  (3) 

2.2.4. Further data editing 

After fitting the lactation curve model, 31,693,777 daily records with LCC from 

42,990 cows in 91 herds remained. Daily records with LCC from lactations ending 

before DIM 305 (n = 8,566,622) were excluded because they did not have LCC for 

DIM 305. Daily records with negative decay (n = 2,093,947) and an extremely bad 

fitting (root mean squared error (RMSE) of lactation curve fitting >95% percentile, 

n = 1,051,662) were also excluded, as were extreme values for magnitude, time to 

peak yield and decay (>99% percentile or <1% percentiles, n = 1,177,626). In cases 

where lactations did not have LCC at DIM 305, LCC at DIM 304 was used as a 

substitute. This was determined based on the 90th percentile of the closest day to 

DIM 305. Following this, daily records from lactations without LCC at DIM 305 or 

304 were excluded (n = 680,185). For every lactation, the calculated conception date 

was calculated by subtracting 282 days (Fitzgerald et al., 2015; Zamorano-Algandar 

et al., 2021) from the subsequent calving date. If no subsequent calving date was 

present, the breeding status was defined as ‘Never’. The breeding status was defined 

as ‘Bred’ if the calculated conception date was earlier than the date of the daily 

record; in all other cases the breeding status was defined as ‘Open’. Only daily 

records with an ‘Open’ breeding status were further included (excluding ‘Bred’ and 

‘Never’ daily records, n = 13,976,100). To account for the herd effect, we aggregated 

herd level lactation curve characteristics (HLCC - herd magnitude, herd time to peak 

yield, herd offset and herd decay) and herd average 305-day milk production 

(HM305) from the previous year data, following the method described by Chen et 

al. (Chen et al., 2022a). In short, we aggregated individual lactations to the calendar 

year in which the lactation ended. Since LCC differ between primiparous cows and 
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multiparous cows (Wood, 1969; Horan et al., 2005; Ehrlich, 2013), we divided herd 

lactations into two parity groups: primiparous cows and multiparous cows. HLCC 

was then calculated as the mean of the LCC per parity group per herd for each 

calendar year, while HM305 was calculated as the mean of M305 per herd for each 

calendar year. Daily records from lactations without HLCC and HM305 from the 

previous year were excluded (n = 248,903). In addition, age in months was calculated 

from age in days. The calving season was defined based on the calving month (3-5: 

Spring; 6-8: Summer; 9-11: Autumn; 12-2: Winter) (Steeneveld et al., 2014; Rutten 

et al., 2016). Two parity groups were defined (primiparous cows and multiparous 

cows). This method resulted in final dataset with 3,898,732 daily records from 

43,430 lactations, 22,673 cows and 86 herds. 

From the final dataset of daily records with breeding status ‘Open’, we constructed 

four datasets. The dataset for DIM 50 included daily records at DIM 50 from cows 

that was not yet conceived at DIM 50. Likewise, datasets were constructed for DIM 

75, 100, and 125, which were considered as potential insemination moments. For 

lactations where LCC was not available on the exact selected insemination moments, 

we selected the closest day within the 90th percentile of the corresponding DIM (48, 

74, 98, 122). After this selection, we have 99,593 daily records from all selected 

insemination moments from 37,021 lactations, 20,508 cows and 85 herds.  

2.2.5. Model building  

The model building for each selected insemination moment was carried out 

separately (Figure 2.2). In every selected insemination moment, cow-parity records 

were randomly split into two parts; 80% for the training set and 20% for the test set 

(Table 1). The training set was used for model training and validation (10-fold cross-

validation). The test set was used for model evaluation.  
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Figure 2.2 Diagram illustrating the model building procedure. 
 

Table 1 Number of cow-parity records, cows and herds in training and test set for different 

selected insemination moments used for model training, validation and evaluation 

Due to the right-skewed distribution of persistency and the normal distribution of 

decay, decay was preferred for statistical analysis and converted to persistency 

afterwards for a more straightforward interpretation (Ehrlich, 2013). Decay at DIM 

305 (decay-305) was therefore defined as the dependent variable. In total, four linear 

regression models for every selected insemination moment were built to predict 

decay-305 (Figure 2.2). The available details at every selected insemination moment 

were used as independent variables. These included the following cow level 

variables: LCC, daily milk yield (kg), age in months, calving season and parity group; 

and herd level variables: HLCC and HM305 from the year preceding the selected 

insemination moments. HLCC and HM305 were expected to explain herd variance 

since we could not add herd as the random effect in prediction models. To compare 

the strength of the effect of each independent variable to the dependent variable, we 

standardized all continuous independent variables. Funnel graphs were generated to 

visualize the ranking of the effect size for all continuous independent variables. To 

Insemination 
moment (day) 

Number of cow-parity records 
Number of cows Number of herds 

Training set Test set Total 

 50   17,902   4,521  22,423   14,536   83  
 75   22,006   5,456   27,462   16,764   84  
 100   19,159   4,752   23,911   15,544   85  
 125   14,701   3,693   18,394   13,024   84  
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validate our method, we also used the same set of data and independent variables to 

predict M305 and assess the validity of our prediction model approach. The model 

is shown as:  

𝑦୧୨୩୪ = 𝜇 + 𝐿𝐶𝐶௜ + 𝐷𝑎𝑖𝑙𝑦 𝑚𝑖𝑙𝑘 𝑦𝑖𝑒𝑙𝑑௜ + 𝐴𝑔𝑒௜ + 𝐶𝑎𝑙𝑣𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛௝ + 𝑃𝑎𝑟𝑖𝑡𝑦 𝑔𝑟𝑜𝑢𝑝௞ + 𝐻𝐿𝐶𝐶௟ + 𝐻𝑀305௟ + ε୧୨୩୪   (4) 

where y represents the dependent variables (decay-305 or M305), µ represents the 

overall mean, i represents the insemination moments (i = DIM 50, 75, 100 or 125), j 

represents the calving season class (j = spring, summer, autumn or winter), k 

represents the parity group class (k = primiparous cows or multiparous cows), l 

represents the previous year, and ε୧୨୩୪ represents the random residual term from a 

normal distribution.  

2.2.6. Model evaluation  

Model evaluation was carried out on test data with four metrics frequently used in 

similar research: coefficient of determination (R2), RMSE, the mean absolute error 

(MAE) and the mean absolute percentage error (MAPE) (Liseune et al., 2020, 2021; 

Salamone et al., 2022). R2 indicates the proportion of the variance of decay-305 

explained by the independent variables. RMSE and MAE indicate the differences 

between predicted and observed decay-305, with MAE being less sensitive to 

extreme values in the prediction errors. MAPE measures how much the model’s 

predictions deviate from the corresponding true value on average, ranging between 

0 and 1. We used these four metrics to evaluate all decay prediction models while 

we only used R2 and MAPE to evaluate all M305 prediction models, in order to 

compare them with the decay models. Data editing and analysis were carried out 

using the Python API for the Spark platform (PySpark). Visualization were 

conducted using GraphPad Prism version 8.0. Code scripts for the data editing steps 

and statistical analyses can be downloaded at (https://github.com/Bovi-

analytics/Chen-et-al-2023a). 
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2.3. Results 

Over all lactations the average M305 of primiparous cows (n = 11,562) varied 

between 6,253 (5%) and 11,390 (95%), with a mean of 8,809 kg. The average M305 

of multiparous cows (n = 15,195) varied between 7,833 (5%) and 13,786 (95%), with 

a mean of 10,813 kg. The average decay-305 of primiparous cows was lower than 

that of multiparous cows (1.55 *10-3 vs 2.41*10-3, equivalent to a persistency of 447 

vs 288 days, respectively). Descriptive statistics for the independent variables are 

only shown for DIM 75 (Table 2); the statistics for the other insemination moments 

(DIM 50, 100 and 125) can be found in GitHub.  

Table 2 Descriptive statistics of the dependent and independent variables used in the model 

predicting decay at DIM 305 (decay-305) at insemination moment DIM 75 based on milk 

production data from 16,764 cows in 84 Dutch and Belgium herds.  

 

a 5% and 95%: the 5% and 95% percentile. 
b Persistency was calculated based on the aforementioned decay using the equation 0.693/decay 
(Ehrlich, 2011). Persistency was not used in the prediction model because of non-normality; decay 
was used instead. A decay of 1.4, 1.5, 1.6, 1.9, 2.2 and 2.5 *10-3 is equivalent to a persistency of 495, 
462, 433, 365, 315 and 277 days, respectively. 
c All values for the independent variables represent the value at DIM75. Herd variables were 
aggregated from the day level data of the previous year following the method described by Chen et al. 
(2022). 

 Primiparous cows  Multiparous cows 
Variables Mean SD 5%a 95%  Mean SD 5% 95% 
Dependent variable          
Decay-305 (*103, day-1) 1.6 b 0.7 0.5 2.9  2.5 0.8 1.2 3.9 
          
Independent variables c          
Cow level variables          
Magnitude (kg) 38.2 6.0 28.2 47.9  51.2 7.5 38.6 63.4 
Time to peak yield (day) 28.2 2.4 24.1 31.9  21.0 3.8 13.3 26.4 
Offset (day) -0.50 2.5*10-5 -0.50 -0.50  -0.53 0.36 -0.78 0.01 
Decay (*103, day-1) 1.4 b 0.9 0.2 3.0  1.9 b 1.0 0.3 3.7 
Daily milk yield (kg) 32.4 5.6 23.2 41.4  42.7 6.7 31.3 53.6 
Age in months 28.2 2.5 25.2 33.1  56.6 18.0 38.0 91.9 
Herd level variables          
Herd magnitude (kg) 37.0 3.5 30.9 42.5  49.9 3.8 43.6 56.0 
Herd time to peak yield 28.5 1.2 26.7 30.6  21.6 1.3 20.1 23.6 
Herd offset (day) -0.50 1.11*10-5 -0.50 -0.50  -0.54 0.09 -0.69 -0.40 
Herd decay (*103, day-1) 1.5 b 0.4 0.9 2.1  2.2 b 0.3 1.7 2.7 
Herd M305 (kg) 9,888  1,001  8,304  11,397   10,002  937  8,449  11,409  
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The model performance indicators of the prediction models for decay-305 at all 

selected insemination moments are summarized in Table 3A. Among all models, 

we found higher R2 and lower RMSE, MAE and MAPE at later insemination 

moments. The R2 of models for decay-305 range from 0.266 to 0.407, while 

RMSE, MAE and MAPE were slightly improved along the selected insemination 

moments.  

Table 3A Model performance indicators1 of prediction models on test set for decay at DIM 

305 at different selected insemination moments (DIM 50, 75, 100 and 125). 

Insemination moment (day) R2 RMSE MAE MAPE 
50 0.266 7.73*10-4 6.16*10-4 0.391 
75 0.270 7.51*10-4 5.98*10-4 0.400 
100 0.325 7.22*10-4 5.72*10-4 0.371 
125 0.407 6.60*10-4 5.22*10-4 0.370 

 

1 Model performance indicators: R2: coefficient of determination; RMSE: root mean squared error; MAE: mean 
absolute error; MAPE: mean absolute percentage error. 
 

Standardized coefficients of the model predicting decay-305 at all potential 

insemination moments are shown in Figure 2.3. Among all potential insemination 

moments, all variables had similar effects on the models. The three most influential 

variables affecting decay-305 were calving in autumn, daily milk yield and 

magnitude. However, the specific order of these variables varied across different 

models. Take model at DIM 75 for example, cows calving in autumn had on average 

3.24 (SE=0.14) lower decay (*104) respectively than calving in winter. Increasing 

one unit of daily milk yield (7.90 kg) corresponded to an average 2.99 (SE=0.17) 

decrease in decay (*104). Increasing one unit of magnitude (9.22 kg/day) 

corresponded to an average 2.62 (SE=0.18) increase in decay (*104). Table 3B 

shows the results of the prediction models for M305, which showed much higher R2. 
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Figure 2.3 Standardized coefficients of the independent variables used to predict decay at 

DIM 305 at all potential insemination moments (DIM 50, 75, 100 and 125).  

 
Table 3B Model performance indicators1 of prediction models on test set for M305 at 

different selected insemination moments (DIM 50, 75, 100 and 125). 

Insemination moment (day) R2 MAPE 
50 0.785 0.073 
75 0.850 0.061 

100 0.889 0.051 
125 0.921 0.043 

 

1 Model performance indicators: R2: coefficient of determination; MAPE: mean absolute percentage error. 
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2.4. Discussion 

This study aimed to predict lactation persistency for DIM 305 at insemination 

moments DIM 50, 75, 100 and 125. Our models have low prediction accuracy, 

although predictions improved at later insemination moments. 

In our study, we used decay to measure persistency. The R2 of all decay models was 

under 0.407, suggesting the bad predictive power of the model with all available 

information included (Olori et al., 1999). Using the same methodology, we were able 

to predict M305 much more accurately, thus confirming our prediction methodology 

to be valid for M305. Similar to previous studies (Gorgulu, 2012; Liseune et al., 2020, 

2021), M305 was predictable at all insemination moments with R2 values ranging 

between 0.79 and 0.92 for the different insemination moments. Other 

methodological approaches were explored to improve the prediction performance of 

the decay-305 models. First, we explored building prediction models for two parity 

groups separately. The results were similar (results shown in GitHub). Next to the 

linear regression, we built models using random forest, lasso regression and ridge 

regression but results were similar (results shown in GitHub). Models from lasso 

regression and ridge regression showed the same results to linear regression, 

indicating that penalization did not improve our models. In addition, adding LCC 

from the previous lactation did not improve the models in our study (results shown 

in GitHub). 

In the current study, we only included cow and herd information in the prediction 

models that was available through the MmmooOgle herd management software. As 

persistency is a heritable trait and could be a target for selection (Cole and VanRaden, 

2006a; Yamazaki et al., 2014; Torshizi et al., 2019) others have tried adding its 

breeding value to prediction models, though with little success (Kjeldsen et al., 2022). 

It's worth noting that the heritability of persistency varies, influenced by factors like 

the definition of persistency, the breed, and the parity of the cows, with heritability 
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values spanning the range of 0.01 to 0.33 (Linde et al., 2000; Cole and Null, 2009; 

Torshizi et al., 2019). Breeding values were not available in our dataset. Persistency 

is furthermore influenced by feed management in herd (Sorensen et al., 2008a; 

Gaillard et al., 2016). We took into account this herd-level factor by including HLCC 

and HM305 into all of our models, rather than including herd as a random effect. 

This approach allows us to apply our prediction model to unknown farms and 

effectively consider the impact of herd-level factors on the study outcomes.  

There is little existing literature to predict persistency for the mid-late lactation based 

on data from the beginning of lactation and herd information. We chose to predict 

persistency for DIM 305 because this is a classic time point for measurements like 

M305. Other studies chose to predict different parameters to help make insemination 

decisions. For example, Kjeldsen et al. predicted energy-corrected milk per day of 

calving interval at DIM 40 for primiparous and multiparous cows separately 

(Kjeldsen et al., 2022). They included the calving interval in the model while the 

future calving interval is actually unknown at the moment of making the 

insemination decision. We assumed that, in their research, predicting milk yield per 

day of calving interval was equivalent to predicting the milk yield. Another example, 

Manca et al. (Manca et al., 2020) used the threshold of daily milk yield at DIM 305 

to determine whether a cow is persistent, and defining persistent cows as those with 

a daily milk yield at DIM 305 greater than 20 kg. Essentially, they used the lactation 

curve characteristics of the first DIM 90, 120, and 150 to predict the future daily 

milk yield at DIM 305. The results of Manca et al. (Manca et al., 2020) correspond 

with our results on predicting M305 as both achieved a high accuracy. It is important 

to note that persistency in our study primarily focuses on the slope or rate of decline 

in milk production over time. Consequently, persistency cannot be directly translated 

into the exact amount of milk that drops per day without knowledge of the initial 

peak milk production level. This consideration should be kept in mind when 

interpreting the findings and conclusions of this study. 
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Our prediction models could predict M305 well but could not predict persistency for 

DIM 305 accurately. We hypothesized that M305 is highly predictable due to its 

association with peak yield (Ehrlich, 2013; Atashi et al., 2020). Peak yield estimation 

was commonly established at our insemination moments from DIM 50 onwards (Kay 

et al., 2005; Peiter et al., 2021). In contrast, persistency was not highly correlated 

with information in early lactation. Additionally, the low prediction accuracy 

observed in our study may be attributed to other factors that influence persistency 

between the insemination moments and DIM 305. One potential factor that could 

impact persistency is pregnancy. However, we were unable to account for the 

pregnancy effect in our prediction model due to several reasons. Firstly, the exact 

timing of pregnancy is unknown at the time of making predictions for open cows. 

Secondly, the quantification of the pregnancy effect on persistency is lacking in 

previous studies, making it difficult to incorporate it into the model. As a result, we 

were unable to correct for the pregnancy effect in our prediction model. 

There are multiple measures of persistency, and all these measures require the 

transformation from raw milk data (Togashi and Lin, 2009; Yamazaki et al., 2011b; 

Burgers et al., 2021). Simple measures of persistency are typically fixed at two time 

points in lactation (Togashi and Lin, 2009; Yamazaki et al., 2011b; Chen et al., 2016), 

limiting the ability to observe persistency changes throughout the lactation. To 

overcome this limitation, we employed lactation curve modelling using the MilkBot 

model, which allowed to assess persistency at any timepoint within the lactation 

period. This so called continuous measurement provides insights into the changes of 

persistency during lactation.  

Our data were obtained from AMS farms and we therefore had access to milk 

production data for each robot visit. Such detailed data did not, however, result in 

high prediction values. The average M305 of the involved farms was higher than that 

of average dairy farms in the Netherlands and Belgium (Gelder, 2022a; b). Higher 

milk production can be explained by more frequent milking on AMS farms than on 
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conventional farms (de Koning, 2010; Hogenboom et al., 2019). In our study, we 

deliberately only included cows with an ‘Open’ breeding status at the selected 

insemination moments. ‘Open’ was defined as cows which were not pregnant at the 

insemination moment but which could be pregnant in the future. Those open cows 

were the target object of our study since their insemination decisions were yet to be 

made. In our study, we only included lactations over 305 days, a period commonly 

accepted by the global standard for livestock data (ICAR, 2017). 

2.5. Conclusion 

Our results showed that based only on cow and herd milk production information, 

predicting persistency for DIM 305 at different insemination moments (DIM 50, 75, 

100 and 125) is challenging. The accuracy of the predictions was found to be low in 

our models. In order to target decision-support at the insemination moment, other 

information is needed to improve the accuracy in predicting persistency.  
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Supplementary Figure 
 

Figure 2.S1 Standardized coefficients of the independent variables used to predict M305 at 

DIM 305 at all potential insemination moments (DIM 50, 75, 100 and 125).  
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Abstract 
Determining the optimal insemination moment for individual cows is complex, 

particularly when considering the impact of pregnancy on milk production. The effect 

of pregnancy on the absolute milk yield has already been reported in several studies. 

Currently, there is limited quantitative knowledge about the association between days 

post conception (DPC) and lactation persistency, based on a lactation curve model, 

and, specifically, how persistency changes during pregnancy and relates to the days in 

milk at conception (DIMc). Understanding this association might provide valuable 

insights to determine the optimal insemination moment. This study, therefore, aimed to 

investigate the association between DPC and lactation persistency, with an additional 

focus on the influence of DIMc. Available milk production data from 2005–2022 were 

available for 23,908 cows from 87 herds located throughout the Netherlands and 

Belgium. Persistency was measured by a lactation curve characteristic decay, 

representing the time taken to halve milk production after peak yield. Decay was 

calculated for eight DPC (0, 30, 60, 90, 120, 150, 180 and 210 days after DIMc) and 

served as the dependent variable. Independent variables included DPC, DIMc (<=60, 

61-90, 91-120, 121-150, 151-180, 181-210, >210), parity group, DPC × parity group, 

DPC × DIMc and variables from 30 days before DIMc as covariates. The results 

showed an increase in decay, i.e., a decrease in persistency, during pregnancy for both 

parity groups, albeit in different ways. Specifically, from DPC 150 to DPC 210, 

multiparous cows showed a higher decline in persistency compared to primiparous 

cows. Furthermore, a later DIMc (cows conceiving later) was associated with higher 

persistency. Except for the early DIMc groups (DIMc<90), DIMc does not impact the 

change in persistency by gestation. The findings from this study contribute to a better 

understanding of how DPC and DIMc during lactation influence lactation persistency, 

enabling more informed decision-making by farmers who wish to take persistency into 

account in their reproduction management. 

Keywords  
Days post conception, lactation persistency, days in milk at conception, dairy 
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3.1. Introduction  

Traditionally, 12 to 13 months is considered to be the economically optimal calving 

interval for dairy cows (Sørensen and Østergaard, 2003; Inchaisri et al., 2011b). Such 

a calving interval can optimize milk yield per cow per year (e.g., Auldist et al., 2007; 

Kok et al., 2019), making use of peak production at the beginning of every lactation. 

However, whether this yearly calving interval is the most optimal choice for every 

cow is now being questioned and different calving interval lengths, and thus different 

insemination moments during the lactation, have been studied (Lehmann et al., 2017; 

Burgers et al., 2021). The optimal insemination moment could be different for 

individual cows in a herd as it is influenced by multiple intrinsic and extrinsic factors 

(milk yield, parity, lactation persistency etc.,). For instance, the recommendation has 

been to inseminate high-producing cows later in lactation since no adverse effects 

on milk production, involuntary culling, udder health and body condition score were 

found (Niozas et al., 2019; Burgers et al., 2020). 

Besides the level of milk production, the persistency of milk production during the 

lactation influences the optimal insemination moment (Inchaisri et al., 2011b; 

Burgers et al., 2021). Delaying the insemination moment for high persistent cows 

has been demonstrated to be profitable due to several the advantages it offers 

including reduced feed costs, decreased number of calvings, lower greenhouse gas 

emissions, decreased incidence of postpartum metabolic diseases and subsequently 

reduced veterinary expenses (Van Amburgh et al., 1997; Kok et al., 2019; Lehmann 

et al., 2019a). Persistency of milk production is the cow’s ability to maintain a slow 

decline in milk production after peak production (Cole and VanRaden, 2006b; 

Togashi and Lin, 2009). However, the definition of persistency differs between 

studies (Togashi and Lin, 2009; Ehrlich, 2011; Burgers et al., 2021). Persistency has 

been defined as the milk yield difference at selected DIM timepoints on the lactation 

curve (Yamazaki et al., 2011b; Togashi et al., 2016) or as the declining slope of milk 

yield within selected intervals after peak milk yield (Chen et al., 2016; Burgers et al., 
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2021). Persistency has also frequently been defined using lactation curve models 

which quantify the slope of the lactation curve based on all available milk yield data, 

but persistency definitions differ between different lactation curve models (Wood, 

1967; Wilmink, 1987; Ehrlich, 2011). For instance, in the MilkBot lactation curve 

model, as used in this study, persistency is expressed as the number of days it takes 

to halve the milk production in the declining stage of lactation (Ehrlich, 2011). 

Deciding on an optimal insemination moment for individual cows within a herd is 

complex because of a multitude of cow and management factors and becomes even 

more complicated when taking into account the direct effect of pregnancy on the 

level of milk production (Yamazaki et al., 2016; Lu and Bovenhuis, 2020). 

Compared to non-pregnant cows, pregnant cows experience an additional decline in 

milk yield during the gestation period (Roche, 2003; Bohmanova et al., 2009; Loker 

et al., 2009). The pregnancy effect is initially limited but becomes more pronounced 

later during the pregnancy due to increased nutrient requirements for the growing 

foetus (Loker et al., 2009) and hormonal changes, leading to an increased regression 

of the mammary gland (Bormann et al., 2002; Zhao et al., 2019). A significant 

decline in the milk yield of pregnant cows has been reported from months 4 or 5 of 

gestation onwards (Roche, 2003; Penasa et al., 2016). For instance, cows pregnant 

from DIM 121 to 210 and those pregnant from DIM 211 to 310 produced 0.9 and 

3.1 kg/d less milk than those pregnant from DIM 1 to 120, respectively (Penasa et 

al., 2016).  

The effect of days post conception (DPC) on an absolute milk yield reduction has 

been reported in several studies (Bohmanova et al., 2009; Loker et al., 2009). To our 

knowledge, the association between DPC and lactation persistency based on a 

lactation curve model has not yet been quantified, i.e., if and how the persistency 

changes during pregnancy and whether or not these changes are related to the days 

in milk at conception (DIMc). Insight into this association might support the 

determination of the optimal insemination moment for farmers who wish to take 
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persistency into account in their reproduction management. Therefore, the goal of 

this study was to investigate the association between DPC and lactation persistency, 

based on a large observational dataset. Additionally, we aimed to explore whether 

this relationship was influenced by the days in milk at conception.  

3.2. Materials and methods 

3.2.1. Available data 

Anonymized daily milk production and cow data were obtained for the years 2005–

2022 from the MmmooOgle programme (Puurs, Belgium). Originally, the dataset 

included 95,529,301 milking robot visit records for 44,540 cows (mainly Holstein-

Friesian) in 91 herds located throughout the Netherlands and Belgium. All records 

included general cow information (e.g., birth date, calving date, age in days and 

parity) and milk yield. The number of lactating cows per herd per year varied 

between 71 (5% percentile) and 320 (95% percentile), with a mean of 174 cows (SD 

= 77, median = 163). 

3.2.2. Data editing 

The data editing diagram is shown in Figure 3.1. All exact calculations are shown 

in the Github repository mentioned at the end of this section. First, the milking robot 

visit records were summarized into 117,420 lactations from 44,540 cows. 

Subsequently, 326 lactations without parity information were excluded. Percentiles 

of age in days were calculated within every parity and 2,988 lactations with extreme 

age per parity (<1% percentile or >99% percentile) were excluded. In addition, 1,156 

lactations with extremely long lactation lengths (>99% percentile) were also 

excluded. Applying these lactation level filters resulted in 91,295,489 milking robot 

visit records for 42,990 cows in 91 herds. Subsequently, a method (Lazenby et al., 

2003) from the International Committee for Animal Recording (ICAR) was used to 

calculate a 24-hour milk yield using the 12 previous milkings for every milking robot 
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visit record. The 24-hour milk yield on the last milking robot visit record on a given 

day was considered as the daily milk yield for that specific day. Afterwards, 

31,693,777 daily records were summarized in 112,949 lactations. Out of these, 

34,646 lactations belonged to primiparous cows, while 78,303 lactations belonged 

to multiparous cows. 

The MilkBot lactation curve model (Ehrlich, 2011) was utilized to fit a lactation 

curve for each daily record, using the MilkBot lactation API 

(https://api.milkbot.com/). The model utilized prior information, specifically the 

population mean lactation curve characteristics, which were adjusted to the 

population of Dutch dairy farms based on a previous study (Chen et al., 2022a). 

Lactation curve characteristics (magnitude, time to peak yield, offset and decay) 

were estimated for every available daily record using the data up to and including 

that day. For example, lactation curve characteristics at DIM 50 were estimated after 

a lactation curve was fitted for the available daily milk records up to and including 

DIM 50. See supplementary material in Github for further description. No records 

were dropped during the fitting process. Persistency was calculated from the decay 

using the formula 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ଴.଺ଽଷௗ௘௖௔௬ (Ehrlich, 2013), expressed as the number of 

days it takes for the milk production to decrease by half during the declining stage 

of lactation. It can be thought of as the "half-life" of milk production. For instance, 

if a cow has a persistency of 300 days and reaches its peak yield of 40kg at DIM100, 

it means that this cow will attain a milk yield of 20kg at DIM400. It is important to 

note that persistency in our study primarily focuses on the slope or rate of decline in 

milk production over time. Consequently, persistency cannot be directly translated 

into the exact amount of milk that drops per day without knowledge of the initial 

milk production level. 
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1 %: the percentile. 
2 LCC: lactation curve characteristics (magnitude, time to peak yield, offset and decay). 
3 RMSE: root mean squared error of the lactation curve fitting.  
4 DIMc: days in milk at conception, calculated by subtracting 282 days from the subsequent calving date. 
 

Figure 3.1 Diagram on data editing of the dataset on milk production per visit to the 

automatic milking system. The numbers in the boxes represent the numbers excluded. 

Daily records with a negative decay (n = 3,159,017) or an extremely poor fit on the 

lactation curve (based on >95% percentile of the root mean squared error (RMSE), 

n = 1,426,738) were excluded, as were extreme values for magnitude, time to peak 

yield and decay (<1% percentile or >99% percentile, n = 1,587,736). The daily 

records of cows with parity above 7 were also excluded (n = 257,297). For every 

lactation, DIMc was calculated by subtracting 282 days (Fitzgerald et al., 2015; 

Zamorano-Algandar et al., 2021) from the subsequent calving date (Figure 3.2). 

Daily records of 40,026 lactations without a subsequent calving date were excluded 

(n = 6,378,863). Daily records with extreme daily milk yield were also excluded (<1% 
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percentile or >99% percentile, n = 377,684). All records of 5,223 lactations without 

records before DIMc were excluded (n = 620,309) as well. This data reduction 

procedure resulted in 17,886,133 daily records from 63,940 lactations, 27,830 cows 

and 88 herds. Of these, 22,135 lactations were from primiparous cows and 41,805 

lactations were from multiparous cows. 

 

Figure 3.2 Illustration for selected days post conception (DPC) before and after conception 

defined at DIMc as 282 days before next calving date. Data from 46,985 lactations (15,328 

for primiparous cows; 31,657 for multiparous cows), 23,908 cows and 87 herds located 

throughout the Netherlands and Belgium from 2005-2022. 

3.2.3. Defining days post conception  

For every lactation, we selected the decay at different DPC (-30, 0, 30, 60, 90, 120, 

150, 180 and 210 days related to DIMc) (Figure 3.2). To calculate the decay at those 

selected DPC, we selected an interval of 10 days before and 10 days after. For 

example, decay at DPC 30 is the average of the decay from DPC 20 to 40 days (with 

a minimum requirement of at least 5 days of data available for calculation). The 

interval average decay calculation was used instead of the decay at a single day to 

exclude the effects of daily fluctuations in milk yield on persistency measures over 

time. This approach allowed for the inclusion of lactations with less frequent daily 

records, maximizing the dataset used for analysis. Peak yield and decay at 30 days 

before DIMc (peak yield-30) were calculated in the same way. The birth year of each 

cow was incorporated into the analysis. Cows born before 2000 were grouped into 

the '2000' category due to their limited numbers. Furthermore, cows born in 2019 

were combined with those born in 2018 to increase the sample size. The calving age 
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in months for each cow in every lactation was determined by calculating the 

difference between the calving date and the birth date. The number of lactations, 

cows and herds per DPC are shown in Table 1. Two parity groups were defined 

(primiparous cows and multiparous cows). The final dataset included 349,467 

records from 46,985 lactations, 23,908 cows and 87 herds. Of these, 15,328 

lactations were from primiparous cows and 31,657 lactations were from multiparous 

cows. 

Table 1 Number of lactations, cows and herds available in the final dataset for different 

days post conception related to days in milk at conception (DIMc), based on data from 

46,985 lactations (15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 

cows and 87 herds located throughout the Netherlands and Belgium from 2005-2022. 

Days post conception Number of lactations Number of cows Number of herds 
-30 47,200 23,987 87 
0 51,938 24,937 88 
30 56,205 25,933 88 
60 58,228 26,481 88 
90 59,027 26,736 88 

120 59,208 26,800 88 
150 58,802 26,726 88 
180 56,984 26,426 88 
210 52,069 25,551 88 

 

3.2.4. Statistical analysis 

Due to the right-skewed distribution of persistency and the normal distribution of 

decay, decay was preferred for statistical analysis and converted to persistency 

afterwards for a more straightforward interpretation (Ehrlich, 2013). A linear mixed 

model was used to analyse the association between DPC and decay (dependent 

variable, multiplied by 1,000). Independent variables, based on an expected 

association with decay, were DPC, i.e., days after DIMc (0, 30, 60, 90, 120, 150, 180 

and 210), parity group and DIMc. Decay at 30 days before DIMc (decay-30, 

multiplied by 1,000) and peak yield-30 were added as covariates to adjust for cow 
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production and decay level before conception. The biologically relevant interaction 

terms DPC × parity group and DPC × DIMc were included. Herd, cow and birth year 

were entered into the model as random effects to account for unobserved herd-related 

(e.g., environment, feed management) and cow-related (e.g., individual 

characteristics, genetic improvement) heterogeneity. The linearity of the continuous 

predictors was assessed by adding their quadratic terms to the model; for all these 

predictors the linearity assumption was met as the quadratic terms were not 

significant (P>0.05). The conditional R2 and the marginal R2 were calculated to 

describe the variance explained by the entire model and the fixed effects, 

respectively. The normality of residuals was checked by a Q-Q plot. The interaction 

term was graphically presented for interpretation.  

To visualize lactation curves for different DIMc in both parity groups, three 

conception groups (early, mean and late conception) were defined based on the 

population mean of DIMc (128 days) as well as one standard deviation below and 

above the mean value (63 and 193 days, respectively). For all conception and parity 

groups, the decay for each DPC was calculated using the estimated marginal means 

from the model. Other lactation curve characteristics (magnitude, time to peak yield 

and offset) were set at their population mean per parity group. The lactation curves 

were estimated for a duration of 240 days following conception.  

Data editing, analysis and visualization were performed using Python API for the 

Spark platform (PySpark) and R version 3.6.3 (R Core Team, 2020), including R 

packages ‘dplyr’ (Wickham et al., 2023), ‘lme4’ (Bates et al., 2015), ‘ggplot2’ 

(Wickham, 2016), ‘emmeans’ (Lenth et al., 2020). Parts of the visualization were 

conducted using Excel and GraphPad Prism version 8.0. Code scripts for the data 

editing steps and statistical analyses can be downloaded from Github 

(https://github.com/Bovi-analytics/Chen-et-al-2023b).  
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3.3. Results 

The distribution of DIMc for primiparous and multiparous cows is presented in 

Figure 3.3. Primiparous cows conceived on average earlier in lactation than 

multiparous cows (121 vs 133 days). In total, 47.5% of the primiparous cows and 

37.5% of the multiparous cows conceived within 100 days of lactation. Primiparous 

cows had lower peak yield-30 (31.9 vs 43.3kg) than multiparous cows and showed 

a lower decay-30 (persistency of 517 vs 341 days) (Table 2). Over all DPC, 

primiparous cows had higher persistency than multiparous cows (median of 442 and 

295 days, Figure 3.4). 

 

Figure 3.3 Frequency distribution of lactations of primiparous (n =15,328) and multiparous 

cows (n =31,657) over days in milk at conception groups in the final dataset of 23,908 cows 

and 87 herds. Days in milk at conception were categorized into seven groups: G1 (<=60), G2 

(61-90), G3 (91-120), G4 (121-150), G5 (151-180), G6 (181-210), and G7 (>210). Data from 

46,985 lactations (15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 cows 

and 87 herds located throughout the Netherlands and Belgium from 2005-2022. 
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Table 2 Descriptive statistics of continuous variables based on data from 46,985 lactations 

(15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 cows and 87 herds 

located throughout the Netherlands and Belgium from 2005-2022. 
Variable Parity group1  Mean  SD Median 25%-75% IQR 
Days in milk at conception (day) P1  121 68 104 67-156 
 P2+  133 66 119 83-168 
Peak yield-30 (kg) 2 P1  31.9 6.0 32.1 27.7-36.1 
 P2+  43.3 7.0 43.8 39.1-48.2 
Decay-30 (*103, day-1) 3 P1  1.344 0.76 1.19 0.79-1.73 
 P2+  2.034 0.95 1.98 1.30-2.66 

1 P1: primiparous cows; P2+: multiparous cows. 
2 Peak yield-30: peak yield was defined based on the average peak yield estimations between 40 and 20 days before 
DIMc. 
3 Decay-30: average decay between 40 and 20 days before DIMc. 
4 A decay of 1.34*10-3 and 2.03*10-3 is equivalent to a persistency of 517 and 341 days, respectively. 

Figure 3.4. Distribution of persistency at different days post conception for primiparous 

and multiparous cows. The central mark is the median. The bottom and top edges of each 

box are the 25th (Q1) and 75th (Q3) percentiles. The whiskers extend to the extreme data 

points that are within the range of [Q1 – 1.5 × (Q3 – Q1), Q3 + 1.5 × (Q3 – Q1)]. Data from 

46,985 lactations (15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 

cows and 87 herds located throughout the Netherlands and Belgium from 2005-2022. 
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The estimated associations between decay and the DPC are presented in Table 3. 

Since an interaction term is included, the interpretation of the other estimates is 

described together with the interaction (Figure 3.5). In this model, the conditional 

R2 and the marginal R2 were 66.9 and 25.6%, respectively and model residuals 

followed a normal distribution. 

Figure 3.5 Visualization of interaction between days post conception and parity group on A) 

decay (*103) based on estimated marginal means from the model; B) persistency based on 

the direct transformation (0.693/decay) from decay in A). Data from 46,985 lactations 

(15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 cows and 87 herds 

located throughout the Netherlands and Belgium from 2005-2022. 

The interaction of DPC × parity group is shown in Figure 3.5A based on estimated 

marginal means derived from the model. For a more intuitive illustration, we 

interpreted the results using persistency instead of decay (Figure 3.5B). For 

primiparous cows, the persistency first decreased slightly from DPC 0 to 60 and 

gradually increased from DPC 60 to 180. For multiparous cows, the persistency 

gradually decreased from DPC 0 to 60, then remained stable up to DPC 150 and 

decreased again from DPC 150 to 210. During pregnancy, both primiparous and 

multiparous cows had a lower persistency at DPC 210 compared to that at DPC 0. 

Multiparous cows showed a higher decline in persistency compared to primiparous 

cows (a 12.2% decrease from 333 to 292 days and a 2.0% decrease from 348 to 341 

days). 
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Table 3 Results of the linear mixed model on the association between decay (*103, day-1) 

and days post conception (and other cow variables) based on data from 46,985 lactations, 

23,908 cows and 87 herds located throughout the Netherlands and Belgium from 2005-

2022. 

Variable   β1 S.E. P-value 
Intercept   -0.238 0.0465 <0.001 
Days post conception 0 Ref 2   
 30 0.398 0.0124 <0.001 
 60 0.655 0.0121 <0.001 
 90 0.754 0.0120 <0.001 
 120 0.771 0.0120 <0.001 
 150 0.758 0.0120 <0.001 
 180 0.759 0.0120 <0.001 
 210 0.799 0.0121 <0.001 
Days in milk at conception 3 G1 Ref 2   
 G2 0.445 0.0108 <0.001 
 G3 0.534 0.0108 <0.001 
 G4 0.530 0.0113 <0.001 
 G5 0.472 0.0121 <0.001 
 G6 0.434 0.0134 <0.001 
 G7 0.359 0.0120 <0.001 
Days post conception × parity group 4 0 × P2+ 0.093 0.0068 <0.001 
 30 × P2+ 0.030 0.0079 <0.001 
 60 × P2+ 0.032 0.0079 <0.001 
 90 × P2+ 0.050 0.0079 <0.001 
 120 × P2+ 0.078 0.0079 <0.001 
 150 × P2+ 0.125 0.0079 <0.001 
 180 × P2+ 0.192 0.0080 <0.001 
 210 × P2+ 0.245 0.0081 <0.001 
Days post conception × Days in milk at conception    <0.001 
Calving age in month  -0.001 0.0001 <0.001 
Peak yield-30 5  0.033 0.0003 <0.001 
Decay-30 6  0.305 0.0016 <0.001 

 

1 β: corrected for interaction Days post conception × Days in milk at conception (not shown). 
2 Ref: used as a reference category. 
3 Days in milk at conception were categorized into seven groups: G1 (<=60), G2 (61-90), G3 (91-120), G4 (121-
150), G5 (151-180), G6 (181-210), and G7 (>210). 
4 Parity group: P1: primiparous cows; P2+: multiparous cows. The interaction term "days post conception × parity 
group" indicates the difference in mean decay between the two parity groups (P1 vs P2+) within each days post 
conception. 
5 Peak yield-30: peak yield was defined based on the average peak yield estimations between 40 and 20 days 
before DIMc. 
6 Decay-30: average decay between 40 and 20 days before DIMc. 
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The interaction of DPC × DIMc is shown in Figure 3.6A based on estimated 

marginal means derived from the model. For a more intuitive illustration, we 

interpreted the results using persistency instead of decay (Figure 3.6B). Across all 

DIMc groups, there was a marginal change in persistency on average (with a 

maximum of 14 days) from DPC 0 to DPC 210, except for G1 and G2, which 

experienced a 36% and 14% decrease (152 and 47 days), respectively. Specifically, 

cows in G1 experienced an average decrease of 123 days (29%) from DPC 0 to DPC 

60, remaining stable thereafter. In G2, cows experienced an average decrease of 40 

days (12%) from DPC 0 to DPC 30, and maintained stability thereafter. 

Figure 3.6. Visualization of interaction between days post conception and days in milk at 

conception on A) decay (*103) based on estimated marginal means from the model; B) 

persistency based on the direct transformation (0.693/decay) from decay in A). Days in 

milk at conception were categorized into seven groups: G1 (<=60), G2 (61-90), G3 (91-

120), G4 (121-150), G5 (151-180), G6 (181-210), and G7 (>210). Data from 46,985 

lactations (15,328 for primiparous cows; 31,657 for multiparous cows), 23,908 cows and 87 

herds located throughout the Netherlands and Belgium from 2005-2022. 

For both parity groups, a later DIMc was associated with higher persistency. 

Specifically, compared to G1, primiparous cows in G2 to G7 DIMc groups 

corresponded to an average of 18 to 100 additional days of persistency at DPC 210, 

reflecting a 6% to 34% increase. Similarly, compared to G1, multiparous cows in G2 
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to G7 DIMc groups corresponded to an average of 12 to 62 additional days of 

persistency at DPC 210, indicating a 5% to 26% increase. Figure 3.7 presents the 

visualization of lactation curves for different DIMc groups (G2, G3 and G5). In both 

parity groups, a later DIMc corresponded to higher total milk production (as 

indicated by the area under the curve) and a lower dry-off milk yield. 

Figure 3.7. Lactation curve visualization of days post conception × parity group included 

in the model. Decay was based on the estimated marginal means from the model. Other 

lactation curve characteristics (magnitude, time to peak yield and offset) were set at their 

population mean per parity group. The conception groups are determined based on the first 

quartile, median, and third quartile of DIMc values (78, 114 and 164).  The vertical line is 

the days in milk at conception. Each lactation curve is visualized for 240 days following 

conception. Data from 46,985 lactations (15,328 for primiparous cows; 31,657 for 

multiparous cows), 23,908 cows and 87 herds located throughout the Netherlands and 

Belgium from 2005-2022. 
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3.4. Discussion  

This study aimed to investigate the association between DPC and lactation 

persistency, additionally exploring whether this relationship is influenced by the 

moment of conception (DIMc) during lactation. This association was quantified by 

a linear mixed model. The results showed a significant decrease in persistency during 

pregnancy for both parity groups, albeit in different ways. A later DIMc was only 

weakly associated with a higher persistency.  

Generally, primiparous cows display higher persistency, but lower total milk 

production compared to multiparous cows (Niozas et al., 2019; Atashi et al., 2020; 

Marumo et al., 2022). Thus, we hypothesized that the association between DPC and 

lactation persistency might differ between parity groups. We therefore incorporated 

an interaction term between parity group and DPC in the model. A notable difference 

was indeed present during late pregnancy (i.e., from DPC 150 onwards, Figure 3.5). 

From DPC 150 to 210, multiparous cows experienced a decline in persistency by 

4.6%, whereas primiparous cows remained stable or slightly inclined in that period.  

Earlier DIMc groups (G1 and G2) exhibit a more pronounced decrease in persistency 

from DPC 0 to DPC 210, while the change in persistency on average is relatively 

small in other DIMc groups (Figure 3.6). The high persistency observed in the early 

DPC for the G1 and G2 groups may be a consequence of the lactation curve 

modelling. At that time (DIM before 90), the lactation curve is still ascending, 

indicating a continuous increase in daily milk yield. Consequently, the model might 

occasionally misinterpret this pattern as high persistency, potentially introducing 

inaccuracies. Previous research had indicated that multiparous cows exhibit a more 

rapid decline in milk production during the later stages of pregnancy compared to 

primiparous cows (Bormann et al., 2002; Leclerc et al., 2008; Yamazaki et al., 2016). 

This decline could potentially be attributed to the increased energy demands of foetal 

development during the third trimester of gestation (Roche, 2003; Brotherstone et 
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al., 2004). Meanwhile, primiparous cows might be able to counterbalance this 

decline in a more controlled way because of the hyperactive maturation of the 

mammary glands (Jingar et al., 2014; Walter et al., 2022).  

A later DIMc, indicating an increased number of days open, is associated with a 

higher persistency after conception. This finding may follow from: 1) biological 

factors: increasing days open leading to higher persistency or, 2) farm management 

practices: cows with higher persistency being more likely to be selected by the 

farmer for a postponed insemination moment and extended lactation (i.e., 

deliberately postponing the time of artificial insemination). Therefore, we cannot 

assert a purely biological causation. Previous research has established a positive 

relationship between days open and persistency (Niozas et al., 2019; Burgers et al., 

2021). However, it is worth noting that primiparous cows, despite exhibiting a higher 

persistency, are generally inseminated earlier than multiparous cows (with an 

average DIMc of 121 days versus 133 days, as observed in our study), likely due to 

their lower total milk yield. This may suggest that farmers’ economic considerations 

prioritize milk production levels above persistency. Different DIMc leads to 

variations in persistency patterns across different DPC, consequently impacting milk 

production performance as expected (Figure 3.7). Longer DIMc is generally 

associated with a lower dry-off milk yield and a higher M305 yield, aligning with 

findings from previous studies (Niozas et al., 2019; Burgers et al., 2021). To consider 

changes in lactation persistency throughout the DPC period when determining the 

optimal insemination timing after calving, one approach is to predict a lactation 

curve from conception to dry off, as illustrated in Figure 3.7. However, it is 

important to note that across the range of DIMc from G1 to G7, there is a difference 

in persistency of 100 days for primiparous cows and 62 days for multiparous cows. 

In this respect, it is important to note that our research focused specifically on 

Holstein-Friesian dairy cows that originate from the Netherlands and Belgium, 

where milk persistency has been recognized and emphasized as a breeding trait since 

2001 (personal communication with Gerben de Jong from the Cattle Improvement 
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Cooperative CRV). This specific context and breeding focus may have influenced 

the results of our study.  

To adjust the model for production parameters before conception, we incorporated 

covariates from the interval between 40 and 20 days before DIMc (decay-30 and 

peak yield-30). In our study, higher pre-conception persistency was associated with 

higher persistency after conception, while a higher peak yield-30 was linked to 

lower persistency. This observation was expected since higher peak milk yield has 

been shown to have a negative relationship with persistency (Hostens et al., 2012; 

Burgers et al., 2020; Marumo et al., 2022). These findings suggest clearly that both 

peak yield-30 and persistency before conception correlated to persistency after 

conception. 

There are multiple measures of persistency, and all these measures require the 

transformation of milk production data (Togashi and Lin, 2009; Yamazaki et al., 

2011b; Burgers et al., 2021). Simple measures of persistency are typically fixed at 

two time points in lactation (Togashi and Lin, 2009; Yamazaki et al., 2011b; Chen 

et al., 2016), limiting the ability to observe persistency changes throughout the 

lactation. To overcome this limitation, we employed lactation curve modelling using 

the MilkBot model, which allowed us to assess persistency at any timepoint within 

the lactation period. This so-called continuous measurement provides insights into 

the changes in persistency during lactation. There are a number of reasons why we 

selected the MilkBot model among all current models. Firstly, the MilkBot model is 

capable of accurately modelling extended lactations (Ehrlich, 2011). Other models, 

such as the Wood function, have limited capacity to accurately describe the shape of 

the lactation curve beyond DIM 305 (Dekkers et al., 1998; Bouallègue and M’hamdi, 

2019). Secondly, the MilkBot model, utilizing Bayesian statistics, provides a 

consistent fitting of individual cow lactation data, even in cases where the data is 

sparse and noisy through the incorporation of prior information (i.e., the population 
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mean lactation curve characteristics). However, the prior information should be 

selected with caution, as is the case with all models based on Bayesian statistics.  

A number of limitations have to considered in our study. Firstly, we were unable to 

directly examine the effect of pregnancy on persistency since we did not have non-

pregnant cows with complete lactation records. In this respect, non-pregnant cows 

that are milked for an extended period without experiencing a subsequent calving 

are not common. Such cows may provide valuable insights into the lactation effects 

on persistency in the absence of pregnancy, but as a farmer aims to get cows pregnant 

to ensure continuing milk production in continuing lactations, these cows are not 

present in high numbers on farms. Additionally, for a more comprehensive analysis, 

it is necessary to match pregnant and non-pregnant cows based on herd, parity and 

calving date. However, achieving such a matching with field data can be challenging 

as this requires a large experimental herd and even identical twins. These limitations 

have to be taken into consideration when interpreting the findings and conclusions 

of this study. 

In the model, the fixed effects accounted for 25.6% of the variance explained. 

Within the unexplained variance, 46.1% was attributed to individual animal 

factors, 7.7% to herd components, and 3.9% to birth year. It is common that the 

individual animal contributes significantly more to the percentage of unexplained 

variance compared to a herd component. In the current study, the data were 

unbalanced (i.e., not all lactations had a decay for all DPC). However, results 

remained robust and consistent with the outcomes observed when using only 

lactations (n = 34,188) with decay for all DPC. This observation indicates that the 

analysis performed on the unbalanced dataset did not significantly affect the 

overall findings and conclusions of our study. 
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3.5. Conclusion 

We have quantified the association between DPC and lactation persistency. During 

pregnancy, there was a decrease in persistency observed in both primiparous and 

multiparous cows. Notably, multiparous cows showed a higher decline in 

persistency compared to primiparous cows. Furthermore, a later DIMc (i.e., 

increased number of days open as cows conceiving later) was associated with a 

higher persistency. Except for the early DIMc groups (DIMc<90), DIMc does not 

impact the change in persistency by gestation. In conclusion, the outcomes from 

this study contribute to a better understanding of how the days post conception, and 

hence the moment of insemination during lactation, influence lactation persistency, 

enabling farmers to make more informed, evidence-based decisions when taking 

persistency into account in their reproduction management. 
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Abstract 
Lactation persistency gets increasing attention, and previous studies stated persistent 

cows are more profitable. These studies were however at cow level, and associations 

might differ from herd level as other herd factors are interfering with herd economic 

performance. Additionally, for other lactation curve characteristics (magnitude, time 

to peak yield) no economic evaluation is performed yet. Our objectives were to 1) 

present a procedure to aggregate cow lactation curves into herd lactation curves (herd 

magnitude, herd time to peak yield and herd persistency); 2) investigate the 

association between herd lactation curve characteristics and herd economic 

performance. Longitudinal Dutch data (8 years) on milk production and accounting 

of 1,673 herds were evaluated. Cow lactation curve characteristics were summarized 

to weighted median herd lactation curve characteristics on a calendar year basis, for 

primiparous and multiparous cows (P1 and P2+). Data was analyzed using linear 

mixed modelling, with income over feed cost (IOFC) per cow as dependent variable, 

herd lactation curve characteristics and other herd variables as independent variables. 

Results indicated all herd lactation curve characteristics were associated with IOFC, 

except for time to peak yield for P1. All were positively associated with IOFC, 

except for the negative association with time to peak yield for P2+. In conclusion, 

we defined herd production patterns by aggregating the cow lactation curves into 

annual herd lactation curves for P1 and P2+. Associations between IOFC and the 

various herd lactation curve characteristics were deemed logical and interpretable, 

suggesting that the herd level aggregation was valid. More research is required to 

determine when herd economic analysis can be based on simple peak production or 

M305, or in which circumstances the more computationally challenging herd 

lactation curve characteristics are better suited. 

Keywords 
Lactation curve, dairy cow, herd economics   
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4.1. Introduction 

A lactation curve model can quantify the lactation curve shape for a single lactation 

of a dairy cow and consists of various lactation curve characteristics which describe 

the curve in different ways. The classic Wood model (Wood, 1967) is the most 

common lactation curve model, inspiring certain improvements and innovations (e.g., 

Wilmink, 1987). The Wood model consists of the scale (representing the level of 

production), the ramp (representing the rising rate of milk production up to the peak 

level) and the declining slope (Wood, 1967). The MilkBot model adjusts the Wood 

model with extended lactations (Ehrlich, 2011). In MilkBot, scale and ramp are 

similar to the Wood model but include other characteristics - the estimated time 

between the start of milk synthesis and calving (offset) and the rate of late lactation 

decline (decay) - which can be transformed into a measure of persistency (Ehrlich, 

2011).  

Persistency is an important lactation curve characteristic describing the cow’s ability 

to maintain a slow rate of decline in production after the peak (Wood, 1967). 

Persistent cows have increased milk yields, improved conception rates, extended 

productive lifetimes and decreased culling rates (Dekkers et al., 1998; Hadley et al., 

2006; Togashi et al., 2016). The economic consequences of persistency have mainly 

been evaluated with bio-economic simulation models (Dekkers et al., 1996, 1998). 

Empirically, economic analyses have only included feed costs (Sölkner and Fuchs, 

1987). Both normative and empirical studies have shown that cows with higher 

persistency are more profitable (e.g., Dekkers et al., 1998; Němečková et al., 2015).  

To our knowledge, only Němečková et al. (2015) have presented empirical economic 

evaluations of other lactation curve characteristics (ramp, scale) besides persistency. 

Their study evaluated only 80 dairy cows from one herd. As lactation curve 

characteristics are only available at the cow level, economic evaluations (both 

empirically and normatively) were all performed at the cow level (Sölkner and Fuchs, 

1987; Dekkers et al., 1998; Němečková et al., 2015). However, associations found 
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at the cow level might differ at the herd level as other herd factors (e.g., management, 

herd size) can interfere with the herd’s economic performance. Economic 

evaluations of lactation curve characteristics at the herd level need a valid 

aggregation of cow lactation curve characteristics. Such a herd lactation curve needs 

however to be summarized on a calendar year basis as only then it is possible to 

combine it with economic data, which is often expressed at a calendar year. This will, 

however, be challenging as individual cow lactation curves often belong to multiple 

calendar years. Aggregating methods from cow to herd level lactation curves, on a 

calendar year basis, have not previously been described. 

This study aimed to 1) present a procedure to aggregate cow lactation curves into 

herd lactation curves (herd magnitude, herd time to peak yield and herd persistency); 

2) investigate the association between the herd lactation curve characteristics and the 

economic performance of dairy herds. 

4.2. Material and methods 

4.2.1. Available data 

Milk production data at the test-day level and herd level performance data for the 

years 2007 to 2016 were obtained from the Dutch Cattle Improvement Cooperative 

(CRV, Arnhem, The Netherlands). Originally, the cow test-day data included 

159,173,868 test-day records from 6,710,117 cows in 20,760 herds. All test-day 

records included general cow information (e.g., birth date, calving date, parity, health 

status), milk yield (kg) and milk component (protein and fat percentage). At the cow 

level, days in milk (DIM), age in days and calving intervals were calculated for every 

lactation. Herd level performance data contained annual averages of somatic cell 

counts (SCC), calving intervals, age in days and the 305-day milk production level 

(M305).  

Herd accounting data from a Dutch accounting agency (Flynth, Arnhem, The 

Netherlands) was obtained. The data represented 2,058 herds with 18,108 yearly 
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records from 2008 to 2015. The herd accounting data included annual information 

on all revenues (e.g., milk, livestock), fixed costs (e.g., depreciation, maintenance 

costs) and variable costs (e.g., feed costs, breeding costs, health costs), as well as 

on general herd characteristics (e.g., soil type, herd size, milking system).  

4.2.2. Development of herd lactation curve characteristics 

We used the cow test-day data to calculate herd lactation curve characteristics. First, 

we fitted a lactation curve for each lactation with the MilkBot model using a 

proprietary maximum likelihood fitting algorithm by the DairySight fitting engine 

(Ehrlich, 2011). The MilkBot equation is shown as: 𝑌(𝑡) = 𝑎 ቆ1 − ௘ష೟್ଶ ቇ 𝑒ିௗ௧          (1) 

in which Y(t) is the estimated milk production when DIM is t, and a (scale), b (ramp), 

and d (decay) are lactation curve characteristics describing the lactation curve. As c 

(offset) is practically undetectable without daily milk production records at the 

beginning of lactation we decided not to use offset. In the current study, a (scale) 

was renamed magnitude of milk production (in kg day-1), b (ramp) was renamed time 

to peak yield (in days), and d (decay) was transformed into a measure of persistency 

using the equation (Ehrlich, 2011):  

 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ଴.଺ଽଷୢ                 (2) 

Persistency (in days) is the time needed for milk production to drop by half after 

the peak.  

After fitting, every lactation had a set of three lactation curve characteristics 

(magnitude, time to peak yield and persistency). Two parity groups were defined: 

primiparous and multiparous cows. To summarise herd lactation curve 

characteristics on a calendar year basis, we used a weighted method as the 

partitioning method to deal with lactations in multiple calendar years (Figure 4.1). 

Lactations belong to every calendar year with a specific weight relative to the 
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number of test-day records. Using the number of test-days as weight, the contribution 

of the lactation for different calendar years was calculated. For example, cow A 

started a lactation in 2008 and finished in 2009. This lactation had 5 test-day records 

in 2008 and 3 in 2009. Suppose there were n and m test-day records in total from all 

lactations in 2008 and 2009 in the herd, in which cow A belonged. Then cow A’s 

lactation curve characteristics would contribute 5 / n to the herd lactation curve 

characteristics in 2008 and 3 / m in 2009. Using the number of test-days as weight, 

weighted medians were calculated per parity group per herd for each calendar year.  

To include only complete lactations for aggregation to herd level, we excluded herd 

level calculations for the first record year (2007) and last record year (2016), 

resulting in 273,322 records from 20,000 herds.  

 

Figure 4.1 Example of how to aggregate herd lactation curve characteristics from individual 

cow lactation curve characteristics illustrated for persistency. 

4.2.3. Data management 

We defined several additional variables based on the accounting dataset. First, 

income over feed cost (IOFC) was calculated as total milk revenue minus total feed 
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costs (Wolf, 2010), and was expressed per cow. Secondly, the relative yearly herd 

milk price was calculated as the difference between herd milk price and the Dutch 

raw milk price for the corresponding year. Finally, the equity ratio was calculated as 

the total equity divided by the total assets. The expansion rate was calculated as: Expansion rate = ቂ(୦ୣ୰ୢ ୱ୧୸ୣ ୧୬ ୫ ୷ୣୟ୰ି ୦ୣ୰ୢ ୱ୧୸ୣ ୧୬ ୬ ୷ୣୟ୰) ୦ୣ୰ୢ ୱ୧୸ୣ ୧୬ ୬ ୷ୣୟ୰ ቃ (𝑚 − 𝑛)ൗ   (3) 

 The yearly herd accounting data of 2,058 herds were merged with herd lactation 

curve characteristics (n = 20,000 herds) and herd performance data (n = 20,760 herds) 

for the corresponding years. This merging was possible for 1,887 herds and resulted 

in a dataset of 12,849 yearly records from 2008-2015. We first excluded 184 yearly 

records as they were not consecutive ( < 2 years consecutive). Secondly, we excluded 

herds selling milk products on farm (direct sellers) and organic herds (153 yearly 

records). We also excluded extremely small herds (herd size < 1% percentiles; 126 

yearly records). Finally, extreme outliers and records with missing values were 

excluded (1,578 yearly records). The final dataset included 1,673 herds with 10,808 

yearly records. 

4.2.4. Statistical analysis 

Using IOFC per cow as the dependent variable, we developed a linear mixed model 

to analyse the association between herd economic performance and herd lactation 

curve characteristics. Apart from the lactation curve characteristics, other variables 

(e.g., soil type, equity ratio, milking system) were selected as independent variables 

based on an expected association with IOFC per cow. Multicollinearity between 

several variables was checked using variance inflation factors. A year variable was 

forced into the model as a fixed effect to account for potential year effects (e.g., 

absolute milk price differences). A herd variable was entered into the model as a 

random effect to account for unobserved herd-related heterogeneity (e.g., 

environment, feed management). In order to compare the strength of the effect of 

each individual independent variable to the dependent variable, we standardised 

continuous independent variables. Akaike information criterion (AIC) and backward 
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selection were used to find the best model. The conditional R2, the marginal R2 and 

the part R2 were calculated to describe the variance explained by the entire model, 

the fixed effects and a single variable, respectively. Data editing and analysis were 

performed using the Python API for the Spark platform (PySpark) and R version 

3.6.3 (R Core Team, 2020), respectively.  

4.3. Results and Discussion 

This study presented a procedure to summarize individual cow lactation curves into 

herd level lactation curve characteristics per calendar year. Aggregating lactation 

curves fitted from data aggregated by DIM or pooled milk production data from all 

cows within groups has been applied previously (Vargas et al., 2000; Dematawewa 

et al., 2007). This method was, however, not applied in our present study, since a 

lactation curve from aggregated milk recording data would neglect individual cow 

variation (Ehrlich, 2013). Therefore, we fitted every lactation curve first and 

subsequently summarized the cow lactation curve characteristics to create annual 

herd level lactation curve characteristics. In this case, all information of cow 

lactation curves is available, which allows analysis of both inter-lactation and intra-

lactation variability. It makes a better understanding of the variance of cow level 

lactation curve characteristics possible, opening possibilities to explore differences 

within and between herds.  

Table 1 Distribution of annual herd lactation curve characteristics from weighted median 

method for primiparous cows (P1) and multiparous cows (P2+). 

Lactation curve characteristics 
P1  P2+ 

Mean (SD) Q11 Q3  Mean (SD) Q1 Q3 

Herd magnitude (kg/day) 34.3 (4.08) 31.8 37.1  45.9 (5.85) 42.5 49.8 

Herd time to peak yield (day) 29.6 (0.44) 29.4 29.9  22.0 (1.25) 21.9 22.5 

Herd persistency (day) 373 (82.3) 316 417  255 (38.8) 229 277 
1Q1 and Q3: The first and the third quartile 
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Average herd lactation curve characteristics are presented in Table 1. Herd 

persistency was on average 373 and 255 days for primiparous and multiparous cows, 

respectively. As in previous studies, primiparous cows tend to have higher 

persistency than multiparous cows (Gengler, 1996) and we found the variance of 

herd persistency was higher in primiparous cows as well (Table 1). Mean milk 

weights calculated for each DIM were often used when making aggregate lactation 

curves (VanRaden et al., 2006). Previously, median and mean milk weights were 

aggregated for each DIM to describe aggregated curves for different dairy breeds 

and parities. These median and means were however based on normally distributed 

data, and therefore mean and median curves were similar in all cases (Ehrlich, 2011). 

We demonstrated that for a skewed distributed variable, like persistency, using 

median was an appropriate way to aggregate to herd level lactation curve 

characteristics as the variance was smaller.  

The results of the final reduced linear mixed model to estimate the associations 

between IOFC per cow and herd lactation curve characteristics are presented in 

Table 2. All herd lactation curve characteristics were associated (P < 0.01) with 

IOFC per cow, except for the time to peak yield for primiparous cows. Apart from 

the negative association with time to peak yield for multiparous cows, all estimated 

coefficients were positive, indicating that an increased lactation curve characteristic 

was associated with an increased IOFC per cow. The standardised coefficients 

indicated that for multiparous cows, herd magnitude had a larger effect on IOFC per 

cow than it did for primiparous cows. Increasing one unit of magnitude for 

multiparous and primiparous cows corresponded to a €152.9 and €48.0 increase in 

IOFC per cow, respectively. Of this model, the conditional R2 and the marginal R2 

were 88.9% and 76.6%, respectively. Herd lactation curve characteristics explained 

14.0% variance of IOFC per cow, 88.9% of which was explained by multiparous 

cows. 
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Table 2 Results of the final reduced linear mixed model on the association between herd 

lactation curve characteristics and income over feed cost per cow (€). 

Variable  β S.E. P value 

Intercept  2,436.7 5.93 < 0.001 
Primiparous cows Magnitude 48.0 3.13 < 0.001 

 Time to peak yield 1.1 1.85 0.600 
 Persistency 14.1 2.44 < 0.001 

Multiparous cows Magnitude 152.9 3.77 < 0.001 

 Time to peak yield -5.2 1.98 0.010 
 Persistency 66.4 2.87 < 0.001 

Year 2008 Ref1   

 2009 -593.1 5.41 < 0.001 

 2010 -225.0 6.45 < 0.001 
 2011 80.7 5.86 < 0.001 
 2012 -248.4 6.46 < 0.001 
 2013 119.6 7.06 < 0.001 
 2014 188.1 6.45 < 0.001 
 2015 -492.6 7.20 < 0.001 

Milking system Conventional Ref1   
 Automatic 14.2  0.030 

Herd size  -16.1 3.44 < 0.001 
SCC  -23.1 2.10 < 0.001 

Equity ratio  6.4 2.55 < 0.001 
Herd intensity  -13.9 2.82 < 0.001 

Calving interval  -22.1 2.14 < 0.001 
Relative herd milk price  149.0 2.32 < 0.001 

1Ref: This category is used as a reference category in the regression analysis. 

Magnitude was most strongly associated with IOFC per cow among the herd 

lactation curve characteristics of both parity groups. This was expected, as, of all 

lactation curve characteristics, herd magnitude has the highest correlation with M305 

(Ehrlich, 2013) and M305 explains most milk revenues (Demeter et al., 2011). Herd 

persistency of both parity groups was positively associated with IOFC per cow. 

These results correspond with earlier findings (Sölkner and Fuchs, 1987; Dekkers et 

al., 1998; Němečková et al., 2015), with previous studies also mentioning 

persistency as an important economic parameter (De Vries, 2006; Togashi and Lin, 

2009). Time to peak yield was least associated with IOFC per cow in our study. This 
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was expected because of the weak phenotypic correlation between the rising rate of 

milk to the peak yield and M305 (Elahi Torshizi, 2016; Atashi et al., 2020). 

Lactation curve characteristics for multiparous cows were more strongly associated 

with herd economics than those for primiparous cows. The herd magnitude of 

multiparous cows was positively associated with IOFC per cow. Multiparous cows 

have a higher milk production compared to primiparous cows (Cole et al., 2012); 

they generally make up 60-70% of the dairy herd and are thus the main milk suppliers 

of the herd.  

4.4. Conclusions 

In this study, we defined herd production patterns by aggregating the individual cow 

level lactation curve characteristics to a yearly herd level for primiparous and 

multiparous cows separately. The associations between IOFC per cow and the 

various herd lactation curve characteristics were deemed logical and interpretable, 

suggesting that the herd level aggregation was valid. More research is required to 

determine when herd level economic analysis can be based on simple peak 

production or M305, or in which circumstances the more computationally 

challenging herd lactation curve characteristics are better suited. 
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Abstract 

Herd milk production performance is generally evaluated using the herd’s average 

305-day milk production (HM305). Economic comparisons between herds are also 

often made using HM305. Comparing herds is thus based on summarized milk 

production, and not on the form of the lactation curves of the cows within the herd. 

Cow lactation curve characteristics can be aggregated on a calendar year basis to 

herd lactation curve characteristics (HLCC) (herd magnitude, herd time to peak 

yield and herd persistency). Thus far, no literature has evaluated whether the shape 

of the lactation curve (described by HLCC) is better able to explain the economic 

variation of herds than summarized milk production such as HM305 does. This study 

aims to determine whether HM305 or HLCC is better able to explain the variation 

in economic performance between herds. To do so, we evaluated eight years of 

Dutch longitudinal data on milk production and the financial accounts of 1,664 

herds. Cow lactation curve characteristics were calculated through lactation curve 

modelling and aggregated to HLCC on a calendar year basis for two parity groups 

(primiparous cows and multiparous cows). Using income over feed cost per cow 

(IOFC-cow) or per 100kg milk (IOFC-milk) as the dependent variable separately, 

we developed four linear mixed models. Two models were used to analyse the 

association between herd economic performance and HLCC; the other two models 

were used to analyse the association between herd economic performance and 

HM305. A Cox test and J test were used to compare two non-nested models to 

investigate whether HM305 or HLCC better explain IOFC. The average IOFC-cow 

was €2,305 (SD = 408) per year, while the average IOFC-milk was €32.1 (SD = 4.6). 

Results showed that HLCC and HM305 explain the same amount of variance of 

IOFC-cow or IOFC-milk. IOFC-cow was associated with HM305 and HLCC 

(except herd time to peak yield for primiparous cows). Herd magnitude was most 

strongly associated with IOFC-cow, followed by herd persistency and herd time to 

peak yield of multiparous cows. IOFC-milk was not associated with HM305 or 

HLCC (except for a weak negative association with herd persistency for primiparous 
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cows). IOFC-cow and IOFC-milk were driven most by time effects. In conclusion, 

HLCC and HM305 explain the same amount of variance in IOFC-cow or IOFC-milk. 

HLCC is more computationally expensive, while HM305 is more readily available.  

Keywords 

lactation curve; milk production; dairy; economics; herd aggregation 

 

5.1. Introduction 

The milk production performance of cows is generally described by 305-d milk 

production (M305) (Fleischer et al., 2001; Buckley et al., 2003), which is an 

indicator of absolute milk production. Additionally, lactation curve characteristics 

(LCC), describing the lactation curve in different ways, can also be used to evaluate 

the milk production performance of cows. LCCs are derived from a lactation curve 

model such as the classic Wood model (Wood, 1967), the Wilmink model (Wilmink, 

1987) and the Milkbot model (Ehrlich, 2011). The MilkBot model, for example, 

consists of the scale (representing the level of production), the ramp (representing 

the rising rate of milk production up to the peak level), the estimated time between 

the start of milk synthesis and calving (offset) and the rate of late lactation decline 

(decay). The latter can be easily transformed into a measure of persistency (Ehrlich, 

2011). Both M305 and LCC are commonly used to compare the milk production 

performance of cows (Mellado et al., 2011; Hostens et al., 2012) as well as economic 

performance (Shim et al., 2004; Němečková et al., 2015). Results show that cows 

with a higher M305 have lower costs per kg of milk and produce a higher IOFC-cow 

(Němečková et al., 2015). 

The milk production performance of the herd is generally evaluated using the herd’s 

average 305-day milk production (HM305) (Pinedo et al., 2010; Nor et al., 2014; 

Shahid et al., 2015) along with some other variables such as average milk production 

per cow per year (Oleggini et al., 2001; Kristensen et al., 2008). Economic 



Chapter 5 Milk production versus lactation curve 

74 
 

comparisons between herds are also generally made using HM305 (corrected for 

milk price) (Ferguson et al., 2000; Green et al., 2002). Comparing herds is thus based 

on the absolute volume of milk production rather than on the form of the lactation 

curves of the cows within the herd. Comparing herds based on LCC is challenging 

as LCCs are at cow level. Chen et al. (Chen et al., 2022b) have already presented a 

procedure to aggregate the individual cow level LCC to the annual herd level for 

primiparous and multiparous cows separately. The annual herd lactation curve 

characteristics (HLCC) open possibilities to explore differences between herds. 

Potentially, HLCC can be an additional herd performance indicator. It differs 

between herds since the environment, management and cow genetics of a dairy herd 

influence individual cow’s LCCs and hence HLCCs (Val-Arreola et al., 2004; 

Ehrlich, 2013). Persistency is one of the lactation curve characteristics that was 

shown to increase profitability at cow level, where more persistent cows were more 

profitable (Dekkers et al., 1996, 1998; Němečková et al., 2015). This association was 

not studied at herd level, where HLCC might be associated with herd level economic 

results. It is therefore not known whether the shape of the curve is better or worse 

than the absolute volume of milk production at explaining the economic variation of 

herds. The herd’s economic performance can be expressed in many ways, depending 

on data availability ant the aim of the research. A herd’s economic performance 

includes revenues, fixed costs and variable costs, which are difficult data to gather 

precisely. When the value of farm assets is not well-known, partial measure of farm 

profitability can be used (Kristensen et al., 2008; Vredenberg et al., 2021), such as 

gross margin, income over feed cost and milk-to-feed price ratio. Gross margin states 

the difference between total revenues and total variable costs. If only milk revenue 

and feed costs data are available, economic calculations, such as income over feed 

cost and milk-to-feed price ratio, can be used (Bailey et al., 2009; Wolf, 2010; Atzori 

et al., 2021). Income over feed cost is often used to monitor whether the feed cost is 

in line for the milk production or whether the feed management is successful (Bailey 

et al., 2005; Buza et al., 2014a; Cowley et al., 2020). Milk-to-feed price ratio 
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indicates the convenience of transforming feed into milk in terms of market 

opportunity (Atzori et al., 2021). However, when the price of milk and feed are 

volatile income over feed cost is a better measure of profitability than milk-to-feed 

price (Wolf, 2010). 

This study aims to determine whether HM305 or HLCC is better at explaining the 

economic performance variation between herds.  

5.2. Materials and methods 

5.2.1. Available data 

For this study, we obtained milk production data at the test-day level and herd level 

performance data for the years 2007–2016 from the Dutch Cattle Improvement 

Cooperative (CRV, Arnhem, The Netherlands). Originally, the cow test-day data 

included 159,173,868 test-day records from 6,710,117 cows in 20,760 herds. All 

test-day records included general cow information (e.g., birth date, calving date, 

parity, health status), milk yield (kg) and milk component (protein and fat 

percentage). At the cow level, days in milk, age in days and calving intervals were 

calculated for every lactation. Herd level performance data contained annual 

averages of somatic cell counts (SCC), calving intervals, age in days and HM305.  

We retrieved herd accounting data from a Dutch accounting agency (Flynth, Arnhem, 

The Netherlands). The data represented 2,058 commercial herds with 18,108 yearly 

records from 2008–2015,herd size varied between 5 and 1075. The herd accounting 

data included annual information on all revenues (e.g., milk, livestock), fixed costs 

(e.g., depreciation, maintenance costs) and variable costs (e.g., feed costs, breeding 

costs, health costs), as well as on general herd characteristics (e.g., soil type, herd 

size, milking system).  
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5.2.2. Development of HLCC 

The development of HLCC was described in detail in our previous study (Chen et 

al., 2022b). In short, we used the cow test-day data to calculate HLCC. First, we 

fitted a lactation curve for each whole lactation with the MilkBot model using a 

proprietary maximum likelihood fitting algorithm of the DairySight fitting engine 

(Ehrlich, 2011). The full MilkBot equation is shown as: 𝑌(𝑡) = 𝑎 ቆ1 − ௘೎ష೟ଶ್ ቇ 𝑒ିௗ௧                           (1) 

in which Y(t) is the estimated milk production when days in milk is t, and a (scale), 

b (ramp), c (offset) and d (decay) are LCC describing the lactation curve. As offset 

is practically undetectable without daily milk production records at the beginning of 

lactation, we decided not to use that measurement, resulting in a simplified equation: 𝑌(𝑡) = 𝑎 ቆ1 − ௘ష೟್ଶ ቇ 𝑒ିௗ௧                           (2) 

In the current study, a (scale) was renamed magnitude of milk production (in kg/day) 

and b (ramp) was renamed time to peak yield (in days). d (decay) was transformed 

into a measure of persistency using the equation (Ehrlich, 2011):  𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = ଴.଺ଽଷௗ                             (3) 

Persistency (in days) is the time needed for milk production to drop by half after 

the peak.  

After fitting, every lactation had a set of three LCCs (magnitude, time to peak yield 

and persistency). Two parity groups were defined: primiparous cows and 

multiparous cows. To summarise HLCC on a calendar year basis, we used a 

weighted method (Chen et al., 2022b) as the partitioning method to deal with 

lactations in multiple calendar years. Lactations belong to every calendar year with 

a specific weight relative to the number of test-day records. Using the number of 

test-days as weight, the contribution of the lactation for different calendar years was 

calculated. For example, cow A started a lactation in 2008 and finished in 2009. This 

lactation had 5 test-day records in 2008 and 3 in 2009. Suppose there were n and m 
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test-day records in total from all lactations in 2008 and 2009 in the herd. Cow A’s 

lactation curve characteristics would contribute 5/n to the herd lactation curve 

characteristics in 2008 and 3/m in 2009. Using the number of test days per year as 

weight, the median HLCCs were defined as the annual HLCC per parity group, per 

herd and per year. As described in Chen et al. (Chen et al., 2022b), we only included 

complete lactations to aggregate at herd level and thus excluded herd level 

calculations for the first record year (2007) and last record year (2016), resulting in 

273,322 records from 20,000 herds. The lactation lengths varied between 56 (5%) 

and 495 (95%) days, with a mean of 336 days. 

5.2.3. Data management  

The definition of all variables is shown in Table 1. We defined several additional 

variables based on the accounting dataset. First, income over feed cost (IOFC) was 

calculated as total milk revenue minus total feed costs (Bailey and Ishler, 2008; Wolf, 

2010). Total annual milk revenue was available in the dataset and total annual feed 

costs were calculated by adding up the annual costs for concentrates, vitamins, 

minerals, wet by-products and roughage. We calculated two variables for IOFC, one 

expressed per cow (IOFC-cow) and the other expressed per 100kg milk (IOFC-

milk).  

Secondly, we calculated annual herd milk prices by dividing the total kg of milk 

delivered to the factory by milk revenue. In addition, we looked up average Dutch 

yearly raw milk prices (European Commission, 2021) and calculated the relative 

annual herd milk price as the difference between herd milk price and the Dutch raw 

milk price for the corresponding year. Thirdly, as an indication of the level of 

economic leverage, we calculated the equity ratio per herd per year as follows: Equity ratio = (total assets –  total liabilities) total assets  

Finally, we calculated the expansion rate from year n to year m as follows: Expansion rate = ൤(herd size in m year −  herd size in n year) herd size in n year ൨ (𝑚 − 𝑛)ൗ  
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An overview of all datasets and defined variables included is shown in Figure 5.1. 

The yearly herd accounting data of 2,058 herds were merged with calculated HLCC 

(n = 20,000 herds) and herd performance data (n = 20,760 herds) for the 

corresponding years. This merging was possible for 1,887 herds and resulted in a 

dataset of 12,849 yearly records from 2008-2015 for further analysis.  

 

Figure 5.1 Overview of variables used in the statistical analyses and the dataset they originate 

from.  
 

The data editing flow diagram is presented in Figure 5.2. We first excluded 184 

yearly records as they were not consecutive (<2 years consecutive). Secondly, we 

excluded herds selling milk products on farms (direct sellers) and organic herds since 

their milk prices differed too greatly from those of conventional herds (153 yearly 

records). We also excluded extremely small herds (herd size <1% percentiles; 126 

yearly records). In addition, we calculated percentiles for IOFC- cow, IOFC-milk, 

herd intensity, equity ratio, HM305, relative herd milk price, SCC, calving interval, 

herd persistency for primiparous cows, herd persistency for multiparous cows and 
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age in days. Of these variables, extreme outliers and records with missing values 

were excluded (1,887 yearly records). The final dataset included 1,664 herds with 

10,499 yearly records.  

 
Table 1 Descriptive statistics of continuous variables over 1,664 Dutch herds for the years 

2008–2015. 
 Description (unit) Mean SD 5%a  95%a  
IOFC-cow b (Milk revenue - feed cost)/herd size (€) 2,305 408 1,609 2,961 
IOFC-milk c 100*(Milk revenue - feed cost)/milk 

delivered to factory (€) 
32.1 4.6 24.0 39.3 

HM305 Average 305-day milk production in the 
herd (kg) 

8,686 899 7,099 10,107 

Equity ratio (total assets - total liabilities) / total assets  0.45 0.31 -0.11 0.93 
Herd intensity Milk production per ha (kg of milk/ha) 15,129 3,841 9,564 22,159 
Relative herd milk price The price difference in relation to national 

raw milk priced (€/100kg) 
2.52 2.08 -0.86 5.71 

Herd size Number of cows present in the herd 85.3 43.2 39.0 151.0 
Expansion rate ((herd size – last year’s herd size)/ last year 

herd size)/year difference 
0.03 0.06 -0.06 0.14 

Age in days Average age in days of cows in the herd 1,716 160 1,483 1,998 
Somatic cell counts Average somatic cell counts of cows in the 

herd (*103 cells/ml) 
193 59 105 301 

Calving interval Average calving interval of cows in the herd 414 23 384 457 
Herd magnitude1e Weighted median magnitude of primiparous 

cows (kg/day) 
34.8 3.7 28.3 40.5 

Herd time to peak yield1 Weighted median time to peak yield of 
primiparous cows (day) 

29.6 0.4 28.9 30.2 

Herd persistency1 Weighted median persistency of 
primiparous cows (day) 

358 70 263 492 

Herd magnitude2+f Weighted median magnitude of multiparous 
cows (kg/day) 

47.7 5.3 38.0 55.8 

Herd time to peak yield2+ Weighted median time to peak yield of 
multiparous cows (day) 

22.1 1.3 20.3 23.3 

Herd persistency2+ Weighted median persistency of 
multiparous cows (day) 

240 33 194 304 

 

a 5% and 95%: the 5% and 95% percentile. 
b IOFC-cow: income over feed cost per cow. 
c IOFC-milk: income over feed cost per 100kg.  
d Average yearly raw milk price aggregated by monthly raw milk price from official milk market observatory 
(European Commission, 2021). 
e 1: primiparous cows. 
f 2+: multiparous cows.  
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1: the difference in milk price and the Dutch raw milk price for the corresponding year. 
2: herd magnitude, herd time to peak yield and herd persistency for primiparous cows and multiparous cows (Chen 
et al., 2022b). 
 
Figure 5.2 Diagram on data editing of the combined production and accounting dataset. The 

numbers in the boxes represent the excluded numbers. 

5.2.4. Statistical analysis 

Using IOFC-cow or IOFC-milk separately as the dependent variable, we developed 

four linear mixed models. Two models were used to analyse the association between 

herd economic performance and HLCC; the other two models were used to analyse 

the association between herd economic performance and HM305. We selected other 

herd variables as independent variables based on an expected association with IOFC. 

Those selected herd variables were soil type (sand/other), successor availability 

(yes/no), equity ratio, herd intensity (kg of milk/ha), milking system 

(automatic/conventional), use of outsourced heifer rearing (yes/no), relative herd 

milk price, herd size, expansion rate, SCC and calving interval. We used variance 

inflation factors to check for multicollinearity between several variables. A year 

variable was forced onto all models as a fixed effect to account for potential year 

effects (e.g., absolute milk price differences). A herd variable was entered into the 

models as a random effect to account for unobserved herd-related heterogeneity (e.g., 

environment, feed management). To compare the strength of the effect of each 
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independent variable to the dependent variable, we standardised continuous 

independent variables. Akaike information criterion and backward selection were 

used to find the best models, which were eventually presented in the results. The 

conditional R2, the marginal R2 and the part R2 were calculated to describe the 

variance explained by the entire model, the fixed effects and a single variable, 

respectively. A Cox test and a J test (Davidson and MacKinnon, 1981) were used to 

compare the two non-nested models to investigate whether HM305 or HLCC better 

explain IOFC. Both tests are used for non-nested hypothesis testing. For example, 

models A and B are two non-nested models with the same dependent variable. In the 

non-nested hypothesis testing, model A would have a null hypothesis that the 

regressors from model B cannot improve the performance of model A. If the null 

hypothesis of model A is rejected, model B is the ‘true’ model, having an additional 

explanatory power beyond that contributed by model A. If the null hypothesis of 

model A is not rejected, model A is the ‘true’ model. The same test can be done for 

model B to determine whether the regressors from model A can improve the 

performance of model B. 

Data editing and analysis were performed using the Python API for the Spark 

platform (PySpark) and R version 3.6.3 (R Core Team, 2020), respectively. Code 

scripts for the data editing steps, statistical analyses and figure visualizing average 

herd lactation curve for primiparous cow and multiparous cow can be downloaded 

at https://github.com/Bovi-analytics/Chen-et-al-2022b. 

5.3. Results 

Total feed costs over all farms varied between €20,345 (5%) and €132,519 (95%) 

per year, with a mean of €63,320. Total revenues likewise varied between €114,589 

(5%) and €540,270 (95%) per year, with a mean of €287,787. The descriptive 

statistics of the continuous variables over all herds and all years are shown in Table 
1. The average IOFC-cow was €2,305 (SD = 408) per year, while the average IOFC-

milk was €32.1 (SD = 4.6). The same patterns were found in both IOFCs for the 
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years 2008-2015, with the lowest value in the year 2009 and the highest value in the 

year 2013 (Figure 5.3). Average herd magnitude, herd time to peak and herd 

persistency were 34.8kg (SD = 3.7), 29.6 days (SD = 0.4) and 358 days (SD = 70) 

for primiparous cows, respectively. Average herd magnitude, herd time to peak and 

herd persistency were 47.7kg (SD = 5.3), 22.1 days (SD = 1.3) and 240 days (SD = 

33) for multiparous cows, respectively. The average HM305 was 8,686kg (SD = 

899). The average herd intensity was 15,129kg of milk/ha (SD = 3,841) and the 

average herd size was 85.3 cows (SD = 43.2). 

 
Figure 5.3 Average income over feed cost per cow (IOFC-cow) and per 100 kg milk (IOFC-

milk) for the years 2008 to 2015. 

 

The results of the final reduced linear mixed models to estimate the associations 

between the two IOFC definitions and HLCC are presented in Tables 2 and 3 
respectively.  

All HLCCs were associated (P<0.01) with IOFC-cow, except for the herd time to 

peak yield for primiparous cows (Table 2). Apart from the negative association with 

herd time to peak yield for multiparous cows, all estimated coefficients were positive, 

indicating that an increased herd lactation curve characteristic was associated with 

an increased IOFC-cow. The standardised coefficients indicated that herd magnitude 
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had a larger effect on IOFC-cow for multiparous cows than it did for primiparous 

cows. Increasing one unit of herd magnitude for multiparous cows and primiparous 

cows corresponded to a €154.3 and €48.0 increase in IOFC-cow, respectively (Table 
2). In this model, the conditional R2 and the marginal R2 were 88.9% and 76.9%, 

respectively. HLCC explained 12.3% variance of IOFC-cow, 86.6% of which was 

explained by multiparous cows. The top three variables explaining the variance of 

IOFC-cow were the year, herd magnitude for multiparous cows and relative herd 

milk price, at 38.2%, 10.7% and 7.0% part R2, respectively.  

 
Table 2 Results of the final reduced linear mixed model on the association between income 

over feed cost per cow (€) and herd lactation curve characteristics (and other herd 

variables) based on data from 1,664 Dutch herds.  
Variable  β S.E. P value 
Intercept  2,437.1 5.82 < 0.001 
     
Primiparous cows Magnitude 48.0 3.09 < 0.001 
 Time to peak yield 1.8 1.85 0.336 
 Persistency 13.3 2.44 < 0.001 
     
Multiparous cows Magnitude 154.3 3.72 < 0.001 
 Time to peak yield -4.4 1.98 0.027 
 Persistency 69.0 2.87 < 0.001 
     
Year 2008 Ref1   
 2009 -586.3 5.44 < 0.001 
 2010 -222.2 6.43 < 0.001 
 2011 85.1 5.78 < 0.001 
 2012 -241.2 6.32 < 0.001 
 2013 129.7 6.88 < 0.001 
 2014 195.2 6.21 < 0.001 
 2015 -481.8 6.95 < 0.001 
Herd size  -16.1 3.40 < 0.001 
Somatic cell counts  -22.9 2.10 < 0.001 
Herd intensity  -14.7 2.81 < 0.001 
Calving interval  -21.6 2.12 < 0.001 
Relative herd milk price  146.4 2.31 < 0.001 

 

1 Ref: used as a reference category. 
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Table 3 Results of the final reduced linear mixed model on the association between income 

over feed cost per 100kg milk (€) and herd lactation curve characteristics (and other herd 

variables) based on data from 1,664 Dutch herds. 
Variable  β S.E. P value 
Intercept  33.60 0.091 < 0.001 
     
Primiparous cows Magnitude -0.05 0.036 0.1343 
 Time to peak yield -0.01 0.021 0.5026 
 Persistency -0.13 0.028 < 0.001 
     
Multiparous cows Magnitude 0.07 0.043 0.1174 
 Time to peak yield -0.03 0.023 0.1500 
 Persistency -0.03 0.033 0.3987 
     
Year 2008 Ref1   
 2009 -7.54 0.064 < 0.001 
 2010 -3.58 0.075 < 0.001 
 2011 0.74 0.069 < 0.001 
 2012 -2.53 0.074 < 0.001 
 2013 1.64 0.080 < 0.001 
 2014 2.07 0.074 < 0.001 
 2015 -6.51 0.081 < 0.001 
Soil type Other soil Ref   
 Sand soil 0.56 0.085 < 0.001 
Somatic cell counts  -0.07 0.024 0.003 
Equity ratio  0.08 0.028 0.005 
Outsourcing heifer rearing No Ref   
 Yes 0.61 0.088 < 0.001 
Herd intensity  -1.21 0.031 < 0.001 
Calving interval  -0.11 0.025 < 0.001 
Relative herd milk price  1.88 0.027 < 0.001 
Expansion rate  0.11 0.018 < 0.001 
Age in days  0.06 0.025 0.011 

 

1 Ref: used as a reference category. 

 

The IOFC-milk was negatively associated with herd persistency for primiparous 

cows (Table 3). A one-unit increase in herd persistency for primiparous cows 

decreased IOFC-milk by €0.13 (P<0.01) on average. In this model, the conditional 

R2 and the marginal R2 were 88.7% and 78.9%, respectively. HLCC only explained 
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0.20% variance of IOFC-milk. The top three variables explaining the variance of 

IOFC-milk were the year, relative herd milk price and herd intensity, at 53.2%, 9.3% 

and 4.5% part R2, respectively.  

The results of the final reduced linear mixed models to estimate the associations 

between the two IOFC definitions and HM305 are presented in Tables 4 and 5 
respectively.  
 

Table 4 Results of the final reduced linear mixed model on the association between income 

over feed cost per cow (€) and average herd 305-day milk production (and other herd 

variables) based on data from 1,664 Dutch herds.  
Variable  β S.E. P value 
Intercept  2,435.2 5.70 < 0.001 
     
Average herd 305-day milk production  206.6 2.95 < 0.001 
     
Year 2008 Ref1   
 2009 -584.5 5.34 < 0.001 
 2010 -224.3 6.33 < 0.001 
 2011 86.2 5.73 < 0.001 
 2012 -248.9 6.25 < 0.001 
 2013 129.5 6.80 < 0.001 
 2014 190.92 6.22 < 0.001 
 2015 -478.1 6.89 < 0.001 
Herd size  -14.2 3.31 < 0.001 
Milking system Conventional Ref   
 Automatic 21.0 6.31 < 0.001 
Somatic cell counts  -22.4 2.10 < 0.001 
Herd intensity  -24.0 2.80 < 0.001 
Calving interval  -17.8 2.10 < 0.001 
Relative herd milk price  148.6 2.26 < 0.001 
Expansion rate  4.84 1.50 0.001 

 

1 Ref: used as a reference category. 
 
 

The final reduced linear mixed model on the association between HM305 and IOFC-

cow is shown in Table 4. Increasing one unit of HM305 corresponded to a €206.6 

increase in IOFC-cow. In this model, the conditional R2 and the marginal R2 were 
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89.6% and 78.7%, respectively. HM305 explained 18.9% variance of IOFC-cow. 

The top three variables explaining the variance of IOFC-cow were the year, HM305 

and relative herd milk price, at 39.5%, 18.9% and 7.5% part R2, respectively.  
 

Table 5 Results of the final reduced linear mixed model on the association between income 

over feed cost per 100kg milk (€) and average herd 305-day milk production (and other herd 

variables) based on data from 1,664 Dutch herds. 
Variable  β S.E. P value 
Intercept  33.60 0.091 < 0.001 
     
Average herd 305-day milk production  -0.01 0.033 0.700 
     
Year 2008 Ref1   
 2009 -7.52 0.064 < 0.001 
 2010 -3.57 0.075 < 0.001 
 2011 0.76 0.069 < 0.001 
 2012 -2.49 0.074 < 0.001 
 2013 1.65 0.080 < 0.001 
 2014 2.09 0.073 < 0.001 
 2015 -6.52 0.081 < 0.001 
Soil type Other soil Ref   
 Sand soil 0.61 0.085 < 0.001 
Somatic cell counts  -0.08 0.024 0.001 
Equity ratio  0.08 0.028 0.008 
Outsourcing heifer rearing No Ref   
 Yes 0.62 0.088 < 0.001 
Herd intensity  -1.21 0.031 < 0.001 
Calving interval  -0.14 0.024 < 0.001 
Relative herd milk price  1.88 0.027 < 0.001 
Expansion rate  0.12 0.018 < 0.001 
Age in days  0.07 0.025 0.006 

 

1 Ref: used as a reference category. 
 
 

The final reduced linear mixed model on the association between HM305 and IOFC-

milk is shown in Table 5. HM305 was not associated with IOFC-milk. In this model, 

the conditional R2 and the marginal R2 were 88.7% and 78.8%, respectively. HM305 

explained 0.03% variance of IOFC-cow. The top three variables explaining the 
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variance of IOFC-milk were again the year, relative herd milk price and herd 

intensity, at 53.3%, 9.1% and 4.2% part R2, respectively. 

The results of the J test and Cox test are shown in Table 6. For IOFC-cow, there is 

no difference between the model including HM305 and the model including HLCC. 

For IOFC-milk, the model including HLCC is significantly better at explaining the 

variance of IOFC-milk than the model including HM305. However, both HM305 

and HLCC variables explained almost no variance at all. 
 

Table 6 Results of non-nested hypothesis testing from Cox test and J test. 
Test Comparison1 Estimate Std Value2 P value Interpretation 

Cox test IOFC-cow HLCC ~ HM305 -576 22.3 -25.8 < 0.001 No difference 

  HM305 ~ HLCC -141 25.6 -6.0 < 0.001  

 IOFC-milk HLCC ~ HM305 -0.9 0.67 -1.38 0.166 HLCC is better 
than HM305 

  HM305 ~ HLCC -32.2 0.72 -44.5 < 0.001  

J test IOFC-cow HLCC ~ HM305 0.9 0.04 24.5 < 0.001 No difference 

  HM305 ~ HLCC 0.3 0.03 8.8 < 0.001  

 IOFC-milk HLCC ~ HM305 1.8 1.34 1.3 0.190 HLCC is better 
than HM305 

  HM305 ~ HLCC 1.0 0.12 8.0 < 0.001  
 

1 IOFC-cow: models for income over feed cost per cow; IOFC-milk: models for income over feed cost per 100kg 
milk; HLCC: models include herd lactation curve characteristics; HM305: models include average herd 305-day 
milk production. 
2 Value: z value for cox test and t value for J test. 
 

All four final multivariable models included variables that showed expected 

associations with the IOFC outcomes (Tables 2-5). For both IOFC variants, SCC, 

herd intensity and calving interval were negatively associated, while relative herd 

milk price was positively associated (P<0.01).  

Outsourcing heifer rearing, expansion rate, equity ratio and age in days were 

positively associated with IOFC-milk (P<0.05). Herd size was negatively associated 

in both IOFC-cow models, while the milking system was only associated with IOFC-

cow when HM305 was present in the model (P<0.01). 
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5.4. Discussion 

The goal of this empirical study was to investigate how HM305 or HLCC are 

associated with economic performance at herd level, defined as IOFC. We used a 

unique dataset incorporating eight years of milk production and accounting data for 

1,664 Dutch herds. Accounting data is rarely available on such a large scale 

(Steeneveld and Hogeveen, 2012; Steeneveld et al., 2015) and having access to it 

provided new opportunities to evaluate dairy herd economic performance. In our 

study, both HM305 and HLCC were associated with IOFC-cow, but they explained 

approximately the same amount of variance. HLCC is significantly better in 

explaining the variance of IOFC-milk than HM305. However, both HM305 and 

HLCC variables explained almost no variance in IOFC-milk at all. 
IOFC was chosen as the herd economic performance indicator as the lactation curve 

is most closely related to milk production and thus milk revenue. In addition, feed 

costs are between 40% to 60% of the total costs of producing milk (Bailey and Ishler, 

2008; Alqaisi et al., 2011). Therefore, milk revenues and feed costs seem to be the 

two economic components that could be most influenced by variations in lactation 

curves between herds when ignoring other variable costs (such as health and 

breeding costs). Other studies have, for instance, evaluated gross margin and the 

milk-to-feed price ratio (Hadley et al., 2006; Vredenberg et al., 2021). We chose to 

focus on IOFC because it is a better measure of profitability in periods of volatility 

(e.g., fluctuations in milk price) compared, for instance, to the milk-to-feed price 

ratio (Wolf, 2010).  

The average IOFC-cow was €2,305 per year, equivalent to €6.22 per day. This value 

corresponds with previous research on IOFC-cow from similar time periods (Hardie 

et al., 2014; Wu et al., 2019). IOFC-cow was associated with HM305, HLCC (except 

herd time to peak yield for primiparous cows), year and other herd characteristics 

(such as relative milk price) (Tables 2 and 3). Our findings on the association 

between IOFC-cow and HM305 correspond with existing literature, as a higher milk 

yield per cow resulted in a higher IOFC-cow (Buza et al., 2014b). Previously, 
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Laroche et al. (Laroche et al., 2020) had explained that the IOFC-cow depends 

mainly on milk production per cow. HLCC and HM305 are both indicators that could 

reflect the herd’s production level. That is why they were both highly associated with 

IOFC-cow. In the current study, HM305 could explain 18.9% variance of IOFC-cow, 

similar to findings from other studies (Demeter et al., 2011). In the same way, we 

could explain the HLCCs’ association with IOFC-cow by their correlation with 

HM305. In the HLCC model, herd magnitude was most strongly associated with 

IOFC-cow among the HLCCs of both parity groups. This was expected, as, of all 

LCCs, the magnitude has the highest correlation with M305 (Ehrlich, 2013). Herd 

persistency of both parity groups was positively associated with IOFC-cow although 

their relative contribution was 2.2-3.6 times smaller than the magnitude. These 

results correspond with earlier findings (Sölkner and Fuchs, 1987; Dekkers et al., 

1998; Němečková et al., 2015) and with previous studies also mentioning persistency 

as an important economic parameter (De Vries, 2006; Togashi and Lin, 2009). Time 

to peak yield was least associated with IOFC-cow in our study, supported by a weak 

phenotypic correlation between the rising rate of milk to the peak yield and M305 

(Elahi Torshizi, 2016; Atashi et al., 2020). 

HLCCs for multiparous cows were more strongly associated with IOFC-cow than 

those for primiparous cows. We expected this finding, since multiparous cows have 

higher milk production than primiparous cows (Cole et al., 2012). As multiparous 

cows generally make up 60-70% of the dairy herd they are thus the main milk 

suppliers of the herd.  

The average IOFC-milk was €33.6, which is in line with previous studies (Wolf, 

2010; Bozic et al., 2012). IOFC-milk was not associated with HM305 and HLCC 

(except for a weak association with herd persistency for primiparous cows). Again, 

we were not surprised by this finding, as IOFC-milk depends primarily on milk 

quality payment characteristics (e.g., milk fat and protein) and the cost of 

concentrates (Laroche et al., 2020). The weak negative association with herd 

persistency for primiparous cows found in the HLCC model can be explained by the 
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fact that primiparous cows are still growing and need more feed than multiparous 

cows to produce the same amount of milk (Santos et al., 2001; Van Knegsel et al., 

2007; Wathes et al., 2007a). However, this association was so weak that it only has 

a small effect compared, for example, to year and relative herd milk price. Other 

studies using accounting data have illustrated similar challenges in finding economic 

effects; the hypothesis is that this is due to large heterogeneity between farms and 

years (Steeneveld et al., 2015; Vredenberg et al., 2021).  

Our results indicate that the year effect is most strongly associated with IOFC. The 

year effect of course reflects the milk price in the Netherlands and we therefore 

expected, for instance, to see the lowest year effect in 2009 because in that year the 

milk price was lowest (European Commission, 2021). We also found that the relative 

herd milk price (the price difference in relation to the national raw milk price) was 

strongly associated with IOFC. This indicates that herds selling milk with a relatively 

higher milk price due to better components (fat and protein) achieve better economic 

performance, which is in agreement with previous studies (Bailey et al., 2005; 

Rodrigues et al., 2005). Herd intensity was negatively associated with IOFC, again 

corresponding with an earlier study (Vibart et al., 2012). 

In our study, we defined HLCC by aggregating the individual cow level LCC to a 

yearly herd level for primiparous and multiparous cows separately. The associations 

between IOFC and the various HLCCs were deemed logical and interpretable, 

suggesting that the herd level aggregation was valid. We had expected HLCC to be 

able to explain more variance in IOFC than HM305 in herd economics since 

persistent cows are proven to be more profitable in cow level studies (Dekkers et al., 

1996, 1998; Němečková et al., 2015). However, in the current herd level study, 

HLCC was not better associated with IOFC than HM305, a finding that we did not 

expect. There might, however, be logical explanations for this finding. First, the 

absolute volume of milk production (HM305) is basically the area under the lactation 

curve. This area consists mainly of the magnitude and the persistency of milk 

production, and, to a lesser extent, of the time to peak yield. This means that the 
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shape of the curve might essentially be another way to describe the absolute volume 

of milk production, which is equally captured by M305. A second potential 

explanation lies in the way LCC is aggregated at herd level. Aggregating HLCC on 

a calendar year basis is challenging, as individual cow lactation curves often belong 

to multiple calendar years (Chen et al., 2022b). In our current study, we used the 

weighted median aggregation method to aggregate HLCC. More sophisticated 

aggregation methods could probably be used in future studies to improve the 

aggregation of HLCC. This may result in a more precise HLCC explaining more 

variance of IOFC than HM305. Potentially, such an improved HLCC might be able 

to reflect economic variation between herds, irrespective of whether this is defined 

by IOFC. 

In our study, HLCC and HM305 explained a similar variance of IOFC. HLCC is 

more computationally expensive, while HM305 is more readily available. 

Potentially, HLCC can be an additional herd indicator, helping farmers and their 

advisors to evaluate herd lactation when making specific decisions and/or analyses. 

For instance, when comparing the HLCC of a single herd over several years, the 

HLCC trends over time may illustrate the genetic improvement of dairy cows for 

persistency.  
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This thesis was conducted to explore the application of lactation curve modelling 

based on routinely collected farm data on commercial dairy farms in the Netherlands 

and Belgium. Applications in cow reproduction performance and herd economic 

performance were shown. Four objectives were formulated: (1) to predict lactation 

persistency for DIM 305 at different insemination moments (2) to investigate the 

association between days post conception (DPC) and persistency (3) to summarize 

cow lactation curves into herd lactation curve characteristics (HLCC - herd 

magnitude, herd time to peak yield and herd decay) and illustrate a field application 

of HLCC (4) to compare whether HLCC or the herd 305-d milk production (HM305) 

is better able to explain herd economic performance. In this chapter, the main results 

of this thesis are discussed. Additionally, the datasets used, the definition of 

persistency, cow and herd level clustering issues and the generalizability of our study 

results to China are discussed.  

6.1. Application in cow reproduction performance  

In Chapter 2, we found that it was not possible to predict future persistency at DIM 

305, although the prediction power was increasing at later insemination moment 

based on the cow and herd data available up to the insemination moments. The low 

prediction accuracy observed in our study may be attributed to other factors that 

influence persistency between the insemination moments and DIM 305. One 

potential factor that could impact persistency is pregnancy. However, we were 

unable to account for the pregnancy effect in our prediction model due to several 

reasons. Firstly, the exact timing of pregnancy is unknown at the time of making 

predictions for open cows. Secondly, the quantification of the pregnancy effect on 

persistency (e.g., the specific mechanisms or causal relationships) is lacking in 

previous studies, making it difficult to incorporate it into the model. As a result, we 

were unable to correct for the pregnancy effect in our prediction model, sparking our 

curiosity to explore the relationship between DPC and persistency in Chapter 3. 
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Chapter 3 summarized how DPC and days in milk at conception (DIMc) during 

lactation influence lactation persistency. We found that persistency decreases during 

pregnancy, but differently for primiparous and multiparous cows. Specifically, from 

DPC 150 to DPC 210, multiparous cows showed a larger decline in persistency 

compared to primiparous cows. Furthermore, later DIMc was weakly associated with 

higher persistency. This weak association suggests that, in general, DIMc does not 

impact the change in persistency.  

Based on the insights gained from Chapters 2 and 3, I wondered which steps can 

be implemented to enhance the accuracy of persistency prediction. Firstly, the 

pregnancy effect need to be examined. In Chapter 3 we did not directly examine the 

pregnancy effect on persistency since we did not use non-pregnant cows with 

complete lactation records. Non-pregnant cows that are milked for an extended 

period without experiencing a subsequent calving are uncommon. Such cows may 

provide valuable insights into the lactation effects on persistency in the absence of 

pregnancy, but as a farmer aims to get cows pregnant to ensure continuing milk 

production in continuing lactations, these cows could only be present in high 

numbers under experimental settings. Additionally, for a more comprehensive 

analysis, it would be advisable to match pregnant and non-pregnant cows based on 

herd, parity and calving date. However, achieving such a matching would be 

challenging as this requires a large experimental herd and even identical twins. 

Finally, the integration of the association between pregnancy and persistency into 

the prediction model relies on identifying the relevant pregnancy-related features 

(such as changes of hormones levels, body condition score, body weight) for 

predicting persistency. Body condition score and body weight are now easily 

measurable with the advancement of technology (such as three dimensional cameras 

and ultrasound measurements) (Yukun et al., 2019; Martins et al., 2020; Albornoz et 

al., 2022). Additional fundamental and perhaps experimental research into the 

biological aspects of this association may be necessary to uncover these specific 

features. 
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6.2. Application in animal health economics at herd level 

Chapter 4 presented various procedures to aggregate individual cow lactation 

curves into annual HLCC and illustrate a field application of HLCC. The HLCC was 

then used in Chapter 5 to study the association between herd economic performance 

and HLCC or HM305. HLCC and HM305 explained the same amount of variance 

of income over feed cost per cow or per 100 kg milk (IOFC-cow or IOFC-milk).  

We had expected HLCC to be able to explain more variance in IOFC than HM305 

in herd economics since persistent cows are proven to be more profitable in cow 

level studies (Dekkers et al., 1996, 1998; Němečková et al., 2015). However, in the 

current herd level study, HLCC was not better associated with IOFC than HM305. 

There might, however, be logical explanations for this finding. Firstly, IOFC is most 

strongly associated with the year effect. The year effect reflects the milk price and 

feed price in the Netherlands. The milk price and feed price are changing every year 

due to lots of reasons (international and regional policy, the supply and demand) 

(Dong et al., 2011; Alqaisi et al., 2019). While within a farm, the farm management 

is relatively stable between years, leading to relatively stable HM305 and HLCC 

between years. Therefore, most of the variance of IOFC were explained by year 

effect. Secondly, the absolute volume of milk production, often represented by 

HM305, is basically the area under the lactation curve. This area consists mainly of 

the magnitude and the persistency of milk production, and to a lesser extent of the 

time to peak yield. This means that the shape of the curve might essentially be 

another way to describe the absolute volume of milk production, which is equally 

captured by M305. Thirdly, we applied the weighted median method discussed in 

Chapter 4, which we believe to be the most robust and fair aggregation method 

among all the methods we introduced in that chapter. Aggregating HLCC on a 

calendar year basis is challenging, as individual cow lactation curves often belong to 

multiple calendar years. More sophisticated aggregation methods for summarizing 

the distribution of cow variance could probably be used in future studies to improve 
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the aggregation of HLCC. This may result in a more precise HLCC explaining more 

variance of IOFC than HM305.  

In Chapters 4 and 5, we aggregated the HLCC on a calendar year basis to align with 

the herd accounting data, which also operates on a calendar year basis. However, it's 

worth noting that the aggregation of lactation curves may vary depending on the 

specific objectives. Our aggregation method is versatile and can be applied for group 

aggregation, not limited to herd-level aggregation. For instance, when monitoring 

population-level trends for genetic purposes, individual lactations can easily be 

aggregated to the year in which the lactation started or ended.  

6.3. Data used in this thesis 

Regarding milk production data in this thesis, we had access to two extensive 

historical datasets: test-day records over the years 2007–2019 from the Dutch Cattle 

Improvement Cooperative (CRV, Arnhem, the Netherlands) and milking robot visit 

records over the years 2005–2022 from the MmmooOgle programme (Puurs, 

Belgium). In addition, we included herd accounting data over 2008–2015 from a 

Dutch accounting agency (Flynth, Arnhem, The Netherlands). All of these 

comprehensive historical datasets are unique, and comparable datasets in size do not 

exist (Bijl et al., 2007; Steeneveld et al., 2012; 2015). Our longitudinal data, collected 

over the span of several years, provided substantial analytical potential. In Chapter 

2, longitudinal data were used for prediction modelling, where past observations 

were used to forecast future outcomes. In Chapter 3, by repeatedly measuring the 

cow persistency before and after conception in longitudinal data, we could capture 

persistency changes within a lactation. Longitudinal data is a robust approach when 

handling variables that experience temporal fluctuations. In Chapter 4 and 5, 

variables such as milk prices and feed costs fluctuated over time, potentially 

impacting associations between IOFC and HLCC or HM305. We gained 

comprehensive understanding of the associations between IOFC and HLCC, 

particularly when including the year effect within our model. 
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However, it should be noted that we used existing data collected in the field which 

were not specifically designed for our research purposes. Consequently, these 

extensive datasets required editing before they could effectively be used in our 

research. The data editing process can be subjective, influenced by personal 

preferences (including research background and habits) and research objectives. 

Even when individuals are collaborating on the same project, different filters may be 

applied during the data editing process, resulting in variations in the final dataset. It 

is possible that during the data editing process, excluding what we perceived as 

extreme values could result in the loss of true observations. While working with this 

existing field data, time and efforts are needed to carefully observe the data and 

determine a sensible data editing procedure. It's undeniable that these extensive 

datasets hold substantial analytical potential. However, it's crucial to be careful 

during the data editing phase to avoid over-editing and potential loss of valuable 

information. 

Nowadays, data is generated relatively inexpensive and should be seen as a by-

product of current animal husbandry offering opportunities for dairy researchers. 

Working on existing dataset can save lots of time, labour and money to design an 

experiment for a specific research purpose. Our application of lactation curve 

modelling on existing datasets is a nice step in effectively applying real-world 

examples in the interdisciplinary domain of data and dairy science. It's important to 

note that we are actively embracing more open science practices. We have made all 

our methods, including data editing and model building, available in a public GitHub 

repository. While our data is not openly accessible, it can be obtained through a 

request to the data owner. All of these open science practices align with the principles 

of making data Findable, Accessible, Interoperable, and Reusable (FAIR) 

(Wilkinson et al., 2016). These practices contribute to the broader goal of enhancing 

the accessibility and transparency of research data and methodologies, which is a 

fundamental aspect of open science. 
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6.4. The definition of persistency 
There are multiple measures of persistency (Table 1), aiming to quantify the 

declining rate of the lactation curve after the peak yield from different perspectives. 

The absence of a standardized measurement method for persistency may hinder 

comparability, reliability, reproducibility, and generalizability of research findings. 

All these measures require the transformation of raw milk data (Togashi and Lin, 

2009; Yamazaki et al., 2011b; Burgers et al., 2021).  

Table 1 List of common definition of persistency in previous studies.  
Measure of persistency Formular Reference 
Difference in milk (kg) 𝑀𝑌240 − 𝑀𝑌60 Yamazaki et al., 2011b 

 𝑀𝑌240 − 𝑀𝑌60 + 100 Togashi et al., 2016 
 𝑀𝑌305 − 𝑀𝑌60 Lehmann et al., 2019 

Daily milk reduction (kg/day) 𝑀𝑌260 − 𝑀𝑌100160  Chen et al., 2016 

 𝑀𝑌200 − 𝑀𝑌100100  Burgers et al., 2021 

 
𝑀𝑌଻ௗ ௕௘௙௢௥௘ ௗ௥௬ି௢௙௙ − 𝑀𝑌100 𝐷𝐼𝑀଻ௗ ௕௘௙௢௥௘ ௗ௥௬ି௢௙௙ − 100  Burgers et al., 2021 

 𝑀𝑌60 − 𝑀𝑌270210  Adediran et al., 2012 

 𝑀𝑌280 − 𝑀𝑌90190  Inchaisri et al., 2010 

Dimensionless quantity 𝑐ି(௕ାଵ) Wood, 1967 

Half-life of milk production (days) 
0.693𝑑𝑒𝑐𝑎𝑦 Ehrlich, 2011 

The selection of a specific method for measuring persistency depends on the research 

objectives. Simple measures of persistency (difference in milk and the daily milk 

reduction) are calculating the absolute difference and the slope of milk reduction, 

typically fixed at two selected timepoints in lactation (Togashi and Lin, 2009; 

Yamazaki et al., 2011b; Chen et al., 2016). These measures are straightforward and 

easy to interpret. These simpler methods involve either using the moving average of 

daily milk yield or estimating milk yield through lactation curve modelling, 

depending on the frequency of milk recording. In Chapter 3, we aimed to assess 

persistency at various timepoints before and after DIMc, utilizing daily milk yield 

data up to that specific timepoint. The earliest measurement was taken 30 days before 
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DIMc, which could potentially precede the peak day. Similarly, in Chapter 2, our 

earliest measurement for persistency was at DIM 50. In both cases, calculating the 

absolute milk difference or slope using the moving average of daily milk yield was 

not suitable for capturing the declining rate.  

An alternative approach we could have used in our studies is employing lactation 

curve modelling to estimate milk yield in the declining stage of lactation (Yamazaki 

et al., 2011b; Chen et al., 2016), such as milk yield at DIM 100 and 200, followed 

by calculating the absolute milk difference or slope. In our studies, we opted not to 

calculate the absolute milk difference or slope using the estimated milk yield 

generated by MilkBot. This decision was primarily driven by the advantages offered 

by the MilkBot model. Notably, this model allows for a direct calculation of 

persistency using one of the LCC known as "decay." What made this approach 

particularly appealing is that the decay variable is already normally distributed, 

eliminating the necessity of transforming the right-skewed persistency into a new 

variable for further statistical analysis (Ehrlich, 2011, 2013). This streamlined the 

analysis and provided a more direct and suitable method for assessing persistency in 

our study.  

For achieving a more accurate fit when dealing with a limited number of records in 

early lactation, the Milkbot model stands out as a strong choice. This model employs 

Bayesian statistics, offering a relatively reliable fitting of individual cow lactation 

data, even in situations where the data is sparse and subject to noise (Ehrlich, 2013). 

This robustness is achieved through the incorporation of prior information (i.e., the 

population mean lactation curve characteristics). However, the utilization of prior 

information is sensitive to the available data, particularly when dealing with a limited 

number of milking records. In our analysis conducted in Chapters 4 and 5, we relied 

on test-day data; however, not all lactations had complete test-day records spanning 

from the beginning to the end of the lactation period. Our investigation revealed that 

fitting results for lactations with sparse test-day records aligned with the prior 

information, which is expected given the scarcity of data points. Hence, it is 
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important to carefully consider whether you want to include the fitting results from 

those lactations with only one or two milking records in your analysis.  

It should also be noticed that the prior information mentioned above should be 

selected with caution, as is the case with all models based on Bayesian statistics (van 

de Schoot et al., 2021). We initiated the process by fitting our data to the MilkBot 

model using the default prior designed for US dairy cows. Subsequently, we 

calculated our own priors tailored to cows in the Netherlands. For future users 

considering the utilization of the MilkBot model, it is important to be mindful of the 

prior information, as customizing it for your specific dataset is a critical step to 

achieve accurate and meaningful results.  

Furthermore, we came across instances of test-day records that exhibited deviations 

from the anticipated pattern. For instance, there were situations in which cows 

exhibited an extremely early peak day or milk yield that appeared to increase towards 

the end of the lactation, resulting in unexpected fitting outcomes (see Figure 6.1). 

Such records pose a challenge for fitting with conventional lactation models. It is 

important to acknowledge that these anomalous records can yield fitting results that 

appear unconventional. In such scenarios, the process of data editing plays a critical 

role in recognizing and mitigating the influence of these unusual fitting results to the 

greatest extent possible. 

 

Figure 6.1 Example of lactations with anomalous milk records and the corresponding fitted 

lactation curve from MilkBot model. 
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6.5. Cow and herd level clustering in the data 

Longitudinal data allowed us to observe several lactations from individual cows over 

the years. To account for the distinct lactation curve characteristics patterns between 

multiparous and primiparous cows (Wood, 1969; Horan et al., 2005; Ehrlich, 2013), 

we introduced the parity group (multiparous cows and primiparous cows) as a 

categorical variable in our applications. However, applying a parity group introduced 

an imbalance in our dataset, as some cows could have multiple lactations as 

multiparous cows, while they would only have one lactation as a primiparous cow. 

This imbalance raised concerns regarding potential bias in our results, as the group 

with more observations (multiparous cows) could dominate the model, potentially 

overshadowing the characteristics of the smaller group (primiparous cows). In this 

case, results might become less generalizable, as they may primarily reflect the larger 

group's characteristics and offer limited insights into the smaller group. We 

employed various methods to address this issue in each chapter. In Chapter 2, we 

included HLCC for each parity group (from the year preceding the selected 

insemination moments) and also added parity group (multiparous cows and 

primiparous cows) as a categorical variable in the prediction model. Additionally, 

we built separate prediction models for two parity groups to assess whether this 

imbalance affects our model's predictive capability. Nevertheless, the results yielded 

similar outcomes, indicating that this imbalance may not substantially impact our 

prediction model. In Chapter 3, we included a biologically relevant interaction term 

between DPC and the parity group into our association model. This interaction term 

enabled us to assess whether the relationship between DPC and persistency differs 

between multiparous and primiparous cows. By doing so, we aimed to mitigate 

potential bias arising from the dataset's imbalance and obtain a more accurate 

understanding of the association between DPC and persistency for both parity groups. 

In Chapter 4, we separately summarized the HLCC for each parity group to ensure 

that the HLCC values were not influenced by the imbalance in the data. In Chapter 
5, we therefore included HLCC for both parity group into the association model and 
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this enables a more nuanced understanding of how different parity groups of HLCC 

contributed to the association with IOFC. 

Considering that the four main chapters of our thesis utilize longitudinal data 

collected from a large number of herds, with indicators derived from cows that are 

nested within these herds, it becomes essential to account for the herd effect. This is 

crucial for mitigating unobserved variations related to herds, including factors like 

environmental conditions and feed management, which are not directly measured 

but can significantly impact the outcomes of our analysis. The approach to correct 

for this herd effect varies depending on the research objective. In the association 

models presented in Chapters 3 and 5, we incorporated a herd variable as a random 

effect within the model to account for unobserved herd-related factors and inherent 

within-herd correlation. Associations found from models with random effects are not 

limited to the herds in our studies but can be generalized to a broader population of 

herds. In the prediction model described in Chapter 2, we handled the herd effect 

differently by including the variables HLCC and HM305 in all of our prediction 

models, rather than treating the herd as a random effect. This approach enabled us to 

apply our prediction model to unknown farms and effectively consider the influence 

of herd-level factors on the study outcomes.  

6.6. Generalizability of our study to China 

Throughout this thesis, we are using the data from the Netherlands and Belgium for 

the application of lactation curve modelling. I have consistently reminded myself of 

the importance of applying the knowledge and skills I acquire to benefit China in the 

future. Now, the question arises: Can the application of lactation curve modelling 

also be beneficial for the Chinese dairy industry? Before addressing this question, it 

is essential to gain understanding of the dairy industry in China. 

The number of cows and total milk production both increased from 2000 to 2015 

(Figure 6.2). During the adjustment period 2015 to 2017, the number of cows in 
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China was down from around 15.1 million in 2015 to about 10.8 million in 2017. 

The decline in the cattle population can be attributed to two primary factors: 1) strict 

environmental regulations on animal manure management and 2) farmers leaving 

the industry as a result of supply and demand imbalances, stemming from a 

significant surge in milk powder imports (Li et al., 2016; Wang et al., 2021). Given 

the dominant position of dairy processors in China's dairy sector, they have shifted 

their milk sourcing strategy from domestically produced raw milk to imported 

powder. This shift was driven by the economic advantage of using imported milk 

powder for manufacturing dairy products compared to using domestically produced 

raw milk. This change has led to a reduced demand for domestically sourced raw 

milk, which, in turn, has resulted in issues such as dumping raw milk and culling of 

dairy cows.  

Figure 6.2 Overview of number of cows and total milk production in China from 2000 to 

2022 (adapted from National Bureau of Statistics) 

Although the number of dairy cattle did not increase or even declined since 2015, 

the total milk production was steady and supply has been guaranteed due to the 

improvement of the milk yield per cow and the efficiency of farming (Figure 6.3). 

The proportion of large scale dairy farms (more than 100 cows per herd) in China 

has increased year by year. It was 11.2% in 2005 and 72% in 2022. The average milk 

yield per cow per year was 2605 kg in 2000, 4760 kg in 2010, 8300 kg in 2020 and 

reached 9200 kg in 2022. This rate of increase was much higher than that observed 
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in the Netherlands over the same period (Chapter 1). The Netherlands, as a leader 

in the dairy industry, has seen well-established and stable growth. In contrast, the 

Chinese dairy industry, starting later, possesses significant untapped potential. As a 

latecomer, the Chinese dairy industry has experienced rapid advancement, facilitated 

by factors such as genetic improvement (importing high-quality semen and cows), 

advanced equipment (TMR, milking parlors, milking robots), and enhanced 

management knowledge in areas like feeding, reproduction, and herd management 

(Li et al., 2016). 

Figure 6.3 Overview of proportion of farms with over 100 cows and average milk 

production per cow per year in China from 2000 to 2022 (adapted from National Bureau of 

Statistics) 

Milk production data is typically recorded by the milking system or through a dairy 

herd improvement system, providing the necessary data for modelling lactation 

curves. The method used to summarize HLCC and associate it with herd economics 

can be adapted for use with data from China. Given that milk revenue is the main 

income and feed cost represents a major cost in farms of China, similar to the 

situation in the Netherlands, it is reasonable to assume that the findings from 

Chapter 5 can be generalized to the Chinese context. 
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China recognizes its role in promoting a more sustainable dairy industry and is 

actively pursuing this goal. Sustainable dairy farming involves optimizing resource 

utilization, enhancing resource efficiency, and reducing environmental impact. 

Currently, the requirements and pressure of environmental protection are increasing 

on China's dairy industry (PRC, 2017, 2020). From my perspective, persistency can 

be a valuable trait that may contribute to a more sustainable dairy industry in China. 

Persistent cows can contribute to more efficient milk production due to their 

extended lactation periods, which reduces the need for frequent calving and the 

associated resource inputs such as feed, land, and labour for raising replacement 

heifers (Dekkers et al., 1998; Hadley et al., 2006; Togashi et al., 2016). Additionally, 

persistent cows require fewer concentrates and consume a higher proportion of 

roughage in their diet, resulting in reduced feed costs (Sölkner and Fuchs, 1987). 

However, regarding the concept of persistency, it is relatively new in the Chinese 

dairy industry and has not yet been incorporated into the breeding system. Currently, 

the breeding system in China primarily focuses on factors such as milk production, 

fat and protein percentages, fat and protein yields, feet and legs score, body condition 

score, somatic cell score, and udder conformation score (National Animal 

Husbandry Central Station, 2022). I would therefore recommend the inclusion of 

persistency in the breeding system. By selectively breeding for more persistent cows, 

we might improve the milk production efficiency of the herd. Additionally, I suggest 

incorporating persistency as a key milk trait in individual cow management. This 

approach can lead to more informed breeding decisions, ultimately contributing to 

the advancement of precision dairy farming practices. By having more persistent 

cows and monitoring the cow persistency, it becomes possible to achieve the same 

level of milk production with fewer calvings. This has the potential to reduce the 

overall environmental footprint of the dairy industry in China.  

Overall, I firmly believe that the application of lactation curve modelling holds 

significant promise for the Chinese dairy industry, offering numerous advantages 

and potential enhancements. An individual cow lactation curve modelling approach 
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empowers dairy farmers with a deeper understanding of individual cows' milk 

production patterns, paving the way for data-driven decision-making. For instance, 

utilizing lactation curve modelling to assess cow persistency and optimize 

insemination decisions. However, the reliability of such applications is likely to be 

significantly bolstered as advanced technologies become more prevalent in dairy 

farming. These technologies may include robotic milking systems, automated 

feeding systems, and comprehensive data recording and analytics. With these 

advancements, we can look forward to an era of precision dairy cow farming in 

China. This transition will further amplify the benefits of lactation curve modelling 

and data-driven approaches, positioning the Chinese dairy industry for increased 

efficiency, improved sustainability, and enhanced productivity. 
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Summary 

Various metrics have been proposed to evaluate milk production of dairy cows, like 

cumulative milk production over a specific period (e.g., 305 days, 365 days, or an 

entire lactation) and milk yield per day within a certain period. These metrics are 

based on simple calculations on raw data. However, they provide an overview of 

milk production performance without capturing changes in milk production over the 

entire lactation period. These changes, or patterns in milk production offer more 

information (e.g., peak yield, peak time, persistency) about the lactation, which can 

be useful for breeding and selection, health monitoring, and other applications. 

Lactation curve models can extrapolate and quantify lactation curves and estimate 

actual production from incomplete data sets, generating various lactation curve 

characteristics (LCC) to describe the curve in different ways. LCC can serve as a 

metric to evaluate milk production performance at the cow level and have diverse 

applications in various dairy research fields. However, some important research 

topics have received insufficient attention. 

This thesis was conducted to explore the application of lactation curve modelling 

based on farm data collected on commercial dairy farms in the Netherlands and 

Belgium. Applications in cow reproduction performance and herd economic 

performance were developed. Four objectives were formulated: (1) to predict 

lactation persistency for DIM 305 at different insemination moments, (2) to 

investigate the association between days post conception and persistency, (3) to 

summarize cow lactation curves into herd lactation curve characteristics (HLCC) 

and illustrate a field application of HLCC, and (4) to compare whether HLCC or the 

herd’s average 305-day milk production (HM305) is better able to explain herd 

economic performance. Throughout this thesis, the MilkBot lactation model was 

chosen for its ability to accurately model extended lactations, leveraging Bayesian 

statistics for consistent fitting in the presence of sparse and noisy data through the 

incorporation of prior information. The MilkBot model consists of LCC: magnitude 
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(representing the level of production), time to peak yield (representing the rising rate 

of milk to the peak production level), offset (the time of maximal creation of 

productive capacity) and decay (the loss of productive capacity), which can be easily 

transformed into a measure of persistency. Persistency was defined as the number of 

days it takes for the milk production to decrease by half during the declining stage 

of lactation. 

First, the shape of the lactation curve has been used as an argument to extend the 

lactation in dairy cows. Cows with flatter lactation curves, referred to as high 

persistent cows, can yield economic benefits when their lactation is extended. 

Therefore, when deciding on the optimal voluntary waiting period (VWP) of an 

individual cow, it is useful to be aware of the persistency for the remainder of that 

lactation, especially for farmers who consider persistency in their reproduction 

management. Currently, breeding values for persistency are calculated for dairy 

cows but no studies have focused on predicting the lactation persistency based on 

readily available cow and herd data. In Chapter 2, available cow and herd level data 

from 2005–2022 were used for a total of 16,980 cows from 84 herds. LCC were 

estimated for every daily record using the data up to and including that day. Due to 

the right-skewed distribution of persistency and the normal distribution of decay, 

decay was preferred for statistical analysis and converted to persistency afterwards 

for a more straightforward interpretation. Four linear regression models for each of 

the selected insemination moment (DIM 50, 75, 100 and 125) were built separately 

to predict decay at DIM 305 (decay-305). Results showed that our models had 

limitations in accurately predicting persistency, although predictions improved 

slightly at later insemination moments, with R2 values ranging between 0.27 and 

0.41.  

The low prediction accuracy observed in our study may be attributed to other factors 

that influence persistency between the insemination moments and DIM 305. One 

potential factor that could impact persistency is pregnancy. However, we were 

unable to account for the pregnancy effect in our prediction model due to several 
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reasons. Firstly, the exact timing of pregnancy is unknown at the time of making 

predictions for open cows. Secondly, the quantification of the pregnancy effect on 

persistency (the specific mechanisms or causal relationships) is lacking in previous 

studies, making it difficult to incorporate it into the model. As a result, we were 

unable to correct for the pregnancy effect in our prediction model, sparking our 

curiosity to explore the relationship between days post conception (DPC) and 

persistency in Chapter 3. 

In Chapter 3, we investigated the association between DPC and persistency, with 

an additional focus on the potential influence of DIM at conception (DIMc) on 

persistency. Milk production data from 2005–2022 were available for 23,908 cows 

from 87 herds. Persistency was measured by the decay as abovementioned. Decay 

was calculated for eight DPC (0, 30, 60, 90, 120, 150, 180 and 210 days after DIMc) 

and served as the dependent variable in a linear model. Independent variables 

included DPC, DIMc (<=60, 61-90, 91-120, 121-150, 151-180, 181-210, >210) , 

parity group, DPC × parity group, DPC × DIMc and variables from 30 days before 

DIMc as covariates. Results showed an increase in decay, i.e., a decrease in 

persistency, during pregnancy for both parity groups, albeit in different ways. 

Specifically, from DPC 150 to DPC 210, multiparous cows showed a higher decline 

in persistency compared to primiparous cows. Furthermore, a later DIMc (cows 

conceiving later) was associated with higher persistency. Except for the early DIMc 

groups (DIMc<90), DIMc does not impact the change in persistency by gestation. 

The findings from this study contribute to a better understanding of how DPC and 

DIMc during lactation influence lactation persistency. 

Within the research field of animal health economics, herd-level studies are 

performed focusing on health and reproduction factors associated with the 

profitability of herds. Lactation persistency gets increasing attention and previous 

studies stated persistent cows are more profitable. These studies were however at 

cow level, and associations might differ from herd level as other herd factors are 

interfering with herd economic performance. Additionally, for other LCC 
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(magnitude, time to peak yield) no economic evaluation is performed yet. Chapter 
4 aimed to 1) present a procedure to aggregate cow lactation curves into HLCC; 2) 

illustrate a field application of HLCC by investigating its association with herd 

economic performance. Eight years of longitudinal Dutch data on milk production 

and accounting from 1,673 herds were evaluated. Cow level LCC were summarized 

to weighted median HLCC on a calendar year basis, for primiparous and multiparous 

cows (P1 and P2+). Data was analyzed using linear mixed modelling, with income 

over feed cost per cow (IOFC-cow) as dependent variable, and HLCC and other 

herd variables as independent variables. Results indicated that all HLCC were 

associated with IOFC-cow, except for herd time to peak yield for P1. Of those 

associated with IOFC-cow, all had positive association except for herd time to peak 

yield for P2+. In conclusion, we defined herd production patterns by aggregating the 

cow lactation curves into annual HLCC for P1 and P2+. Associations between IOFC-

cow and the various HLCC were deemed logical and interpretable, suggesting that 

the HLCC aggregation was valid.  

Herd milk production performance is generally evaluated using HM305. Economic 

comparisons between herds are also often made using HM305. Comparing herds is 

thus based on summarized milk production, and not on the form of the lactation 

curves of the cows within the herd. Thus far, no literature has evaluated whether the 

shape of the lactation curve (described by HLCC) is better able to explain the 

economic variation of herds than summarized milk production such as HM305 does. 

Chapter 5 aimed to determine whether HM305 or HLCC is better able to explain 

the variation in economic performance between herds. To do so, we evaluated eight 

years of Dutch longitudinal data on milk production and the accounting of 1,664 

herds. Cow level LCC were calculated through lactation curve modelling and 

aggregated to HLCC on a calendar year basis for P1 and P2+. Using income over 

feed cost per cow (IOFC-cow) or per 100kg milk (IOFC-milk) as the dependent 

variable separately, we developed four linear mixed models. Two models were used 

to analyse the association between herd economic performance and HLCC; the other 
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two models were used to analyse the association between herd economic 

performance and HM305. Results showed that HLCC and HM305 explain the same 

amount of variance of IOFC-cow or IOFC-milk. Both IOFC-cow and IOFC-milk 

were driven most by year effects (reflecting the milk price and feed price). IOFC-

cow was associated with HM305 and HLCC (except herd time to peak yield for P1). 

Herd magnitude was most strongly associated with IOFC-cow, followed by herd 

persistency and herd time to peak yield of P2+. IOFC-milk was not associated with 

HM305 or HLCC (except for a weak negative association with herd persistency for 

P1).  

In the general discussion (Chapter 6), the main results of this thesis are discussed. I 

discussed the limitations in predicting future persistency for DIM 305 and proposed 

steps for improving the accuracy of persistency prediction, drawing insights from 

Chapters 2 and 3. I provided an explanation for why HLCC exhibited the same 

association with IOFC compared to HM305 and suggested the potential application 

of aggregation methods. Additionally, the datasets used, the definition of persistency, 

cow and herd level clustering issues and the generalizability of our study results to 

China are discussed. 
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Samenvatting 

Er bestaan verschillende indicatoren om de melkproductie van melkkoeien te 

evalueren, zoals cumulatieve melkproductie over een specifieke periode 

(bijvoorbeeld 305 dagen, 365 dagen of een hele lactatie) en melkgift per dag binnen 

een bepaalde periode. Deze indicatoren zijn gebaseerd op eenvoudige berekeningen 

van ruwe gegevens. Ze bieden inzicht in de melkproductie van koeien, maar ze geven 

geen inzicht in de veranderingen in melkproductie over een periode. Deze 

veranderingen, of patronen in melkproductie, kunnen meer informatie bieden (bijv. 

piekproductie, moment van piekproductie, persistentie) over de lactatie. Dit kan 

nuttig zijn voor fokkerij- en selectiedoeleinden, gezondheidsmonitoring en andere 

toepassingen. Lactatiecurve modellen zijn in staat om lactatiecurves van melkkoeien 

grafisch weer te geven en om de melkproductie te kwantificeren. Met lactatiecurve 

modellen kan op basis van onvolledige datasets, een lactatiecurve worden geschat, 

en kunnen er verschillende lactatiecurve kenmerken (LCC) worden gegenereerd 

(bijvoorbeeld persistentie) die de melkproductiecurve op verschillende manieren 

beschrijven. LCC kunnen dienen als een maatstaf om de melkproductie van 

melkkoeien te evalueren en hebben diverse toepassingen in verschillende 

onderzoeksvelden. Enkele belangrijke onderwerpen hebben echter onvoldoende 

aandacht gekregen. 

Dit proefschrift had als doel het toepassen van lactatiecurve-modellering op basis 

van bedrijfsgegevens verzameld op commerciële melkveebedrijven in Nederland en 

België te onderzoeken. Toepassingen op het gebied van vruchtbaarheid van 

melkkoeien en economische prestaties van het bedrijf werden ontwikkeld. Vier 

doelstellingen werden geformuleerd: (1) het voorspellen van lactatiepersistentie voor 

dag in lactatie 305 bij verschillende inseminatiemomenten, (2) onderzoek naar de 

associatie tussen dagen na conceptie en persistentie, (3) het samenvatten van de 

lactatiecurves van individuele koeien tot bedrijfsniveau lactatiecurves (HLCC) en 

het illustreren van een praktische toepassing van HLCC, en (4) het vergelijken of 
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HLCC of de gemiddelde 305-dagen melkproductie van het bedrijf (HM305) beter in 

staat is om de economische prestaties van een melkveebedrijf te verklaren. In dit 

proefschrift is het MilkBot lactatiemodel gebruikt om nauwkeurig verlengde 

lactaties te modelleren. In het MilkBot lactatiemodel is gebruik gemaakt van 

Bayesiaanse statistiek en is dus in geval van ontbrekende data prior informatie 

gebruikt. Het MilkBot lactatiemodel genereert LCC, namelijk de hoogte van de start 

van de melkproductie, de snelheid van stijging van melkproductie, de hoogte van de 

piekproductie, tijd tot piekproductie, en de daling na piekproductie wat gemakkelijk 

kan worden omgezet in persistentie. Persistentie werd gedefinieerd als het aantal 

dagen dat nodig is voor de melkproductie om te halveren tijdens de fase van dalende 

melkproductie. 

In eerder onderzoek is de persistentie van melkproductie genoemd als argument om 

de lactatie bij melkkoeien te verlengen. Er was gevonden dat voor melkkoeien met 

vlakkere lactatiecurves, aangeduid als persistente koeien, het economisch voordelig 

is om de lactatie te verlengen. Daarom is het handig om op het inseminatie moment 

te weten of de koe in het vervolg van de lactatie een persistente melkproductie zal 

hebben. Op deze manier kan de vrijwillige wachttijd (VWP) van een individuele koe 

geoptimaliseerd worden. Momenteel worden fokwaarden voor persistentie berekend 

voor melkkoeien, maar er zijn geen studies die zich hebben gericht op het 

voorspellen van de persistentie van melkproductie op basis routine matig 

beschikbare data van koeien en bedrijven. In Hoofdstuk 2 zijn beschikbare data van 

in totaal 16.980 melkkoeien van 84 bedrijven gedurende de jaren van 2005-2022 

gebruikt. LCC werden geschat voor elke dag in lactatie op basis van gegevens tot 

aan die dag. Vanwege de niet-normale verdeling van persistentie en de normale 

verdeling van de decay, is deze laatste gebruikt bij de statistische analyses. De decay 

is later omgezet naar persistentie. Vier lineaire regressiemodellen voor elk van de 

geselecteerde inseminatiemomenten (dag in lactatie 50, 75, 100 en 125) werden 

afzonderlijk gemaakt om decay bij 305 dagen in melk (decay-305) te voorspellen. 

De resultaten toonden aan dat onze modellen niet nauwkeurig de persistentie van 
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melkproductie konden voorspellen. De voorspellingen verbeterden echter wel bij 

latere inseminatiemomenten, met R2-waarden variërend tussen 0,27 en 0,41. 

De lage nauwkeurigheid van voorspellingen in ons onderzoek kan worden 

toegeschreven aan andere factoren die tussen de inseminatiemomenten en 305 dagen 

in melk van invloed zijn op persistentie. Een mogelijke factor die van invloed kan 

zijn op persistentie is de dracht. We konden echter geen rekening houden met het 

effect van de dracht in ons voorspellingsmodel om verschillende redenen. Ten eerste 

is de exacte timing van de dracht niet bekend op het moment van voorspelling voor 

nog niet drachtige koeien. Ten tweede ontbreekt in eerdere studies de kwantificatie 

van het dracht effect op persistentie (de specifieke mechanismen of causale 

verbanden), waardoor het moeilijk is om het in het model op te nemen. Als gevolg 

daarvan konden we het niet corrigeren voor het effect van dracht in ons 

voorspellingsmodel, wat onze nieuwsgierigheid aanwakkerde om de relatie tussen 

dagen na conceptie (DPC) en persistentie in Hoofdstuk 3 te verkennen. 

In Hoofdstuk 3 onderzochten we de associatie tussen DPC en persistentie, met een 

extra focus op de mogelijke invloed van dagen in lactatie bij conceptie (DIMc) op 

persistentie. Melkproductiegegevens van 2005-2022 waren beschikbaar voor 23.908 

koeien van 87 bedrijven. Persistentie werd gedefinieerd als het aantal dagen dat 

nodig is voor de melkproductie om te halveren tijdens de fase van dalende 

melkproductie. Verval werd berekend voor acht DPC (0, 30, 60, 90, 120, 150, 180 

en 210 dagen na DIMc) en diende als afhankelijke variabele in een lineair model. 

Onafhankelijke variabelen omvatten DPC, DIMc (<=60, 61-90, 91-120, 121-150, 

151-180, 181-210, >210), pariteitsgroep, DPC × pariteitsgroep, DPC × DIMc en 

variabelen vanaf 30 dagen voor DIMc als covariaten. De resultaten toonden een 

afname van persistentie tijdens de dracht voor beide pariteitsgroepen, zij het op 

verschillende manieren. Specifiek lieten oudere koeien van DPC 150 tot DPC 210 

een grotere afname in persistentie zien in vergelijking met koeien in de eerste lactatie. 

Bovendien was een latere DIMc (koeien die later drachtig worden) geassocieerd met 

een hogere persistentie. Behalve voor de vroege DIMc-groepen (DIMc <90) heeft 
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DIMc geen invloed op de verandering in persistentie door de dracht. De bevindingen 

van dit onderzoek dragen bij aan een beter begrip van hoe DPC en DIMc tijdens de 

lactatie de lactatiepersistentie beïnvloeden. 

Binnen het onderzoeksveld van de economie van diergezondheid wordt er onderzoek 

verricht naar de associatie tussen gezondheids- en vruchtbaarheidsfactoren en de 

winstgevendheid van melkveebedrijven. De persistentie van melkproductie krijgt 

steeds meer aandacht en eerdere studies stelden dat koeien met een persistente 

melkproductie winstgevender zijn. Deze studies waren echter allemaal op koe-

niveau, en associaties kunnen verschillen op bedrijfsniveau omdat andere 

bedrijfsfactoren interfereren met de economische prestaties van het bedrijf. 

Bovendien is er nog geen economische evaluatie uitgevoerd voor andere LCC dan 

persistentie (piekproductie en tijd tot piekproductie). Hoofdstuk 4 had als doel om 

1) een procedure te presenteren om de lactatiecurves van individuele koeien te 

aggregeren tot HLCC; 2) een toepassing van HLCC te illustreren door de associatie 

met de economische prestaties van melkveebedrijven te onderzoeken. Acht jaar aan 

longitudinale Nederlandse data over melkproductie en boekhouddata van 1.673 

melkveebedrijven werden geanalyseerd. LCC op koe-niveau werden samengevat tot 

een gewogen mediane HLCC op jaarbasis, voor eerste kalfskoeien en oudere koeien 

(P1 en P2+). De gegevens werden geanalyseerd met linear mixed models, waarbij 

het voersaldo per koe (IOFC-koe) de afhankelijke variabele was, en HLCC en 

andere bedrijfsfactoren als onafhankelijke variabelen. De resultaten gaven aan dat 

alle HLCC geassocieerd waren met IOFC-koe, behalve de tijd tot piekproductie voor 

P1 op bedrijfsniveau. Van die variabelen die geassocieerd waren met IOFC-koe, 

hadden alle een positieve associatie behalve tijd tot piekproductie voor P2+ op 

bedrijfsniveau. Concluderend hebben we de productiepatronen van een 

melkveebedrijf gedefinieerd door de lactatiecurves van individuele koeien samen te 

voegen tot jaarlijkse HLCC voor P1 en P2+. De associaties tussen IOFC-koe en de 

verschillende HLCC waren logisch en te interpreteren, wat suggereert dat de 

aggregatie van HLCC op een goede manier uitgevoerd is.  
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De melkproductie op bedrijfsniveau wordt over het algemeen geanalyseerd met de 

HM305. Economische vergelijkingen tussen melkveebedrijven worden daarom ook 

vaak gemaakt met behulp van HM305. Het vergelijken van melkveebedrijven is dus 

gebaseerd op de totale melkproductie en niet op de vorm van de lactatiecurves van 

de koeien binnen het bedrijf. Tot nu toe zijn er geen studies die bepalen of de vorm 

van de lactatiecurve (beschreven door HLCC) beter in staat is om de economische 

variatie tussen bedrijven te verklaren dan de totale melkproductie zoals HM305 dat 

doet. Hoofdstuk 5 had als doel om te bepalen of HM305 of HLCC beter in staat is 

om de variatie in economische prestaties tussen bedrijven te verklaren. Om dit te 

onderzoeken hebben we acht jaar aan Nederlandse longitudinale data over 

melkproductie en boekhouddata van 1.664 melkveebedrijven gebruikt. LCC op koe-

niveau werden berekend door middel van lactatiecurve-modellering en 

samengevoegd tot HLCC op jaarbasis voor P1 en P2+. Met voersaldo per koe 

(IOFC-koe) of per 100 kg melk (IOFC-melk) als afzonderlijke afhankelijke 

variabele ontwikkelden we vier linear mixed models. Twee modellen werden 

gebruikt om de associatie tussen economische prestaties van de bedrijven en HLCC 

te analyseren; de andere twee modellen werden gebruikt om de associatie tussen 

economische prestaties van de bedrijven en HM305 te analyseren. Resultaten 

toonden aan dat zowel HLCC als HM305 dezelfde hoeveelheid variantie van IOFC-

koe of IOFC-melk verklaren. Zowel IOFC-koe als IOFC-melk werden voornamelijk 

beïnvloed door jaareffecten (die de melkprijs en voerprijs weerspiegelen). IOFC-koe 

was geassocieerd met zowel HM305 als HLCC (behalve de tijd tot piekproductie op 

bedrijfsniveau voor P1). De bedrijfsgrootte was het sterkst geassocieerd met IOFC-

koe, gevolgd door persistentie op bedrijfsniveau en tijd tot piekproductie van P2+ op 

bedrijfsniveau. IOFC-melk was niet geassocieerd met HM305 of HLCC (behalve 

een zwakke negatieve associatie met persistentie voor P1 op bedrijfsniveau). 

In de algemene discussie (Hoofdstuk 6) worden de belangrijkste resultaten van dit 

proefschrift besproken. Ik heb de beperkingen besproken bij het voorspellen van 

toekomstige persistentie voor dag in lactatie 305 en stappen voorgesteld om de 
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nauwkeurigheid van persistentie -voorspelling te verbeteren, gebruikmakend van 

inzichten uit Hoofdstukken 2 en 3. Ik heb een verklaring gegeven waarom HLCC 

dezelfde associatie met IOFC vertoonden in vergelijking met HM305 en de 

mogelijke toepassing van aggregatiemethoden voorgesteld. Daarnaast werden de 

gebruikte datasets, de definitie van persistentie, beperkingen met betrekking tot 

clustering op het niveau van koeien en bedrijven, en de generaliseerbaarheid van de 

resultaten van ons onderzoek naar China besproken.
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中文简介 

在奶牛养殖产业中，我们可使用不同的度量指标去评估奶牛的泌乳性能，例

如在特定泌乳天数内的累积产奶量（305 天、365 天或全泌乳期）及其日均产奶

量。此类指标仅需对原始的产奶数据进行简单计算即可获得。但它们仅提供了对

泌乳性能的总概，无法捕捉泌乳期内的产奶量变化。而这些奶量的变化，抑或是

当中的规律，蕴藏着大量信息（如产奶峰值、峰值时间、泌乳持续力等）。这些

信息可为牧场的繁殖、选育和健康监测等工作提供重要价值。泌乳曲线模型可用

于预测和量化泌乳曲线。在使用泌乳曲线模型对（无论完整与否的）产奶数据进

行拟合后，我们会获得一系列的泌乳曲线参数（LCC），它们会从不同角度来描

述泌乳曲线。根据特定公式，我们可通过 LCC 较精确地估算实际产奶量。因此，

目前 LCC 亦是评估奶牛泌乳性能的实用度量指标之一，且于奶牛研究领域中有

各种不同的应用。然而，一些重要的研究方向还未得到足够的关注。 

本论文旨在探讨泌乳曲线模型在荷兰和比利时奶牛牧场数据上的应用，分别

在个体奶牛繁殖表现和牧场经济效益表现方面进行了研究。论文共有四个目标：

（1）在不同的配种时刻，我们能否预测泌乳天数第 305 日的泌乳持续力；（2）

探索孕后天数与泌乳持续力之间的关系；（3）对牧场内个体奶牛泌乳曲线进行

总结，计算出牧场泌乳曲线参数（HLCC），并展示HLCC的实际应用；以及（4）

比较 HLCC和牧场的平均 305天产奶量（HM305）哪个更能解释牧场的经济效益

表现。在整个论文中，我们选用了 MilkBot 泌乳模型，因它能较为准确地拟合相

对较长的泌乳期，通过纳入先验信息和贝叶斯统计，即使在数据缺失较多和有噪

音的情况下，该模型拟合表现相对稳定。MilkBot 模型会生成四个 LCC：幅度

（反映产量水平）、峰值时间（反映泌乳高峰前的泌乳量的上升速度）、偏移

（反映最初出现泌乳的时间）和衰减（反映泌乳高峰后泌乳量的下降速度），其
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中我们可通过衰减变量计算出泌乳持续力。该泌乳持续力被定义为在泌乳高峰过

后，日产奶量减半所需的天数。 

泌乳曲线的形状被用作延长奶牛泌乳期的有效依据。泌乳曲线较为平坦的奶

牛，即高持续力奶牛，在延长泌乳期时可以带来经济效益。因此，在考虑个体奶

牛的最佳自愿等待期时，了解该泌乳期未来的泌乳持续力是非常重要的，尤其是

对于那些相对关注持续力的牧场管理者而言。目前，奶牛的泌乳持续力有育种值

作为参考，暂未研究使用较简单易得的奶牛和牧场数据去预测泌乳持续力。在第

二章中，我们分析了来自 84 个牧场的 16,980 头奶牛在 2005 年至 2022 年间的产

奶和牧场数据，使用它们的日产奶记录通过泌乳模型拟合后获得当日的LCC。由

于持续力呈右偏分布，而衰减变量呈正态分布，因此我们先使用衰减变量进行统

计分析，其后转换为持续力以便解释。我们于四个不同的配种时刻（泌乳第 50、

75、100 和 125 天），建立了四个线性回归模型来预测泌乳第 305 天时的衰减

（decay-305）。结果显示，模型在越迟的配种时刻，预测准确性越高，但 R2 值

在 0.27和 0.41之间，说明模型无法准确预测泌乳持续力。 

所观察到的低预测准确性可能归因于那些影响配种时刻和泌乳第 305 天之间

持续力的潜在因素，而其中潜在因素之一是妊娠。我们未能在预测模型中校正妊

娠效应，原因如下：首先，在为未孕奶牛进行预测时，妊娠的发生时间是未知的。

其次，暂无研究对妊娠效应（具体机制或因果关系）进行量化，这使其难以被纳

入模型内。综上所述，我们未能在预测模型中校正妊娠效应，但因此萌生了对妊

娠效应和泌乳持续力之间关系的好奇心。 

在第三章中，我们研究了孕后天数（DPC）与泌乳持续力的关联，并探索了

受精时的泌乳天数（DIMc）对该关联的影响。我们分析了来自 87 个牧场的

23,908头奶牛在 2005年至 2022年间的产奶数据。持续力同样通过 LCC中的衰减

变量来计算获得。我们选择了八个 DPC（受精后的 0、30、60、90、120、150、
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180 和 210 天）的衰减变量，并将其作为线性模型的因变量。自变量包括 DPC、

DIMc（≤60, 61-90, 91-120, 121-150, 151-180, 181-210, ＞210）、胎次分组（初产

牛 P1和经产牛 P2+）、DPC × 胎次分组、DIMc × DPC以及 DIMc前 30天的变量

作为协变量。结果显示，在妊娠期间，两个胎次分组的持续力均有所下降，但规

律不同。具体而言，在DPC 150到DPC 210之间，P2+的持续力下降幅度较 P1更

大。此外，越晚的 DIMc（怀孕较晚）与越高的持续力相关。除了早期的 DIMc

组（DIMc < 90），DIMc不影响妊娠期间持续力的变化。此发现有助于大家更好

地理解孕后天数 DPC和 DIMc如何影响泌乳持续力。 

在动物卫生经济学研究领域，有许多研究者在牧场水平上进行关于与牧场收

益相关的健康和生殖因素的研究。泌乳持续力越来越受到关注，有研究表明高持

续力的奶牛更具盈利性。然而，这些研究是在个体奶牛水平进行的，它们的结论

无法直接套用至牧场水平（即牧场若拥有越多高持续力的牛，其盈利情况越好）。

因为在牧场水平，往往存在其他复杂的牧场层面的因素影响牧场经济效益。此外，

尚未有研究对其他泌乳曲线参数（幅度、峰值时间）进行经济评估。第四章旨在

1）提出计算出牧场泌乳曲线参数（HLCC）的方法；2）分析 HLCC 与牧场经济

效益的关联，从而展示 HLCC 在实际生产上的应用。我们分析了来自 1,673 个牧

场共 8 年的产奶和牧场数据，以及财务报表。在每个日历年，我们对牧场内 P1

和 P2+分别进行统计，胎次组内所有个体奶牛 LCC的加权中位数，为该胎次组于

该日历年的 HLCC。随后，我们使用线性混合模型对数据进行分析，以平均每头

奶牛的饲料成本收益（IOFC-cow）为因变量，HLCC和其他牧场变量为自变量。

结果显示，所有 HLCC 都与 IOFC-cow 相关，除了初产牛的牧场峰值时间。在所

有与 IOFC-cow 相关的 HLCC 中，它们都与 IOFC-cow 呈正相关，除了经产牛的

牧场峰值时间呈负相关外。总而言之，我们提出计算 HLCC 的方法。IOFC-cow

与各 HLCC之间的关联也是合理的，证明 HLCC的计算是有效和实用的。 
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人们通常使用 HM305 对牧场的产奶表现进行评估，和比较牧场之间的经济

效益。因此，牧场之间的比较是基于产奶总量，而不是基于牧场内每头牛的泌乳

曲线形状。迄今为止，未文献评估牧场泌乳曲线的形状（由 HLCC描述）是否能

解释牧场经济效益，相比之下，HM305 等的累积产奶量是否更具有解释力。第

五章的目标是比较 HM305 和 HLCC 哪个更能解释牧场内经济效益。为此，我们

分析了来自 1,664 个牧场共 8 年的产奶和牧场数据，以及财务报表。通过泌乳曲

线模型的拟合计算了每头牛在每个泌乳期的LCC，并在日历年的基础上计算出牧

场 P1和 P2+ 的 HLCC。以平均每头奶牛和平均每公斤奶的饲料成本收益（IOFC-

cow 和 IOFC-milk）为独立的因变量，我们共建立了四个线性混合模型。当中两

个模型用于分析牧场经济效益与 HLCC之间的关系，另外两个模型用于分析牧场

经济效益与 HM305 之间的关系。结果表明，HLCC 和 HM305 对 IOFC-cow 或

IOFC-milk的具有相同的解释力。IOFC-cow和 IOFC-milk主要受所在年份（反映

了牛奶价格和饲料价格）的影响。IOFC-cow 与 HM305 和 HLCC 相关（除 P1 的

牧场峰值时间外）。牧场产幅度与 IOFC-cow 有最强的相关性，其次是牧场的持

续力和 P2+的牧场峰值时间。IOFC-milk与HM305和HLCC均无关联（除了与 P1

牧场持续力存在微弱负相关）。在总结性讨论（第六章）中，我首先简述了论文

的主要发现。基于第二、三章的研究结果，我探讨了无法预测未来泌乳持续力的

原因，并提出了提高预测准确性的方案。基于第四、五章的研究结果，我探讨了

为何 HLCC 和 HM305 对 IOFC 有相同解释力，提出 HLCC 的潜在应用价值。此

外，就本论文使用的数据集、对泌乳持续力的定义、在个体牛和牧场水平上出现

的聚类问题以及本研究结果在中国的普适性等方面，本人提出自己的一些浅知拙

见，以此与大家共同探讨与研究，敬请广大同仁不吝赐教。 
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