# Retrieve secret from Azure Key Vault via Databricks Secret Scope
# Replace <data> with the actual data name you want to access
# Replace <your-key-name> with the actual key name you want to access.
<data>_secret = dbutils.secrets.get(scope="bovi_analytics_secrets_scope", key= <your-key-name> )
# Print the secret (only for debugging; avoid in production)
print(<data>_secret)
Storing and Accessing Secrets in Azure Key Vault
Slack
Before accessing the secret in Databricks, make sure to:
- ✅ Talk to Enhong or Miel to store the key in the Azure Key Vault.
- ✅ Use the secret scope
bovi_analytics_secrets_scope
in Databricks.
🔐 Access the Key in Databricks
Use the following code snippet to retrieve the secret:
Overview of blob storage accounts and keys
blob-storage-account | scope | key |
---|---|---|
lab-us | bovi_analytics_secrets_scope | azure-bovi-analytics-lab-us |
lab-eu | bovi_analytics_secrets_scope | azure-bovi-analytics-lab-eu |
gpluse | bovi_analytics_secrets_scope | azure-bovi-analytics-gpluse-eu |
playbehavior | bovi_analytics_secrets_scope | azure-bovi-analytics-playbehavior-eu |
methanedata | bovi_analytics_secrets_scope | azure-bovi-analytics-methanedata-us |
azure-bovi-analytics-methanedata-us
Real Example: Accessing Bovi-Analytics Data from Azure Blob Storage
In this example, we use a secret stored in Azure Key Vault (retrieved via Databricks Secret Scope) to authenticate and access data stored in an Azure Blob Storage account.
%scala// Set the Azure Blob Storage account key using the Databricks secret
spark.sparkContext.hadoopConfiguration.set(
"fs.azure.account.key.blob-storage-account.blob.core.windows.net",
dbutils.secrets.get(scope="bovi_analytics_secrets_scope", key= "key")
)
%python// Set the Azure Blob Storage account key using the Databricks secret
spark.conf.set(
"fs.azure.account.key.blob-storage-account.blob.core.windows.net",
dbutils.secrets.get(scope="bovi_analytics_secrets_scope", key= "key")
)
# Accessing farm data stored in blob storage
= "wasbs://container-name@blob-storage-acount.blob.core.windows.net/path-to-file/"
file_location = "txt"
file_type = spark.read.format(file_type).load(file_location)
data_set display(data_set)